• Title/Summary/Keyword: Half bridge inverter

Search Result 260, Processing Time 0.028 seconds

A CW $CO_2$ Laser Using a High Voltage Dc-dc Converter with Half-bridge Resonant Inverter and Cockroft-Walton Multiplier

  • Chung, Hyun-Ju;Joung, Jong-Han;Kim, Geun-Young;Min, Byoung-Dae;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.123-129
    • /
    • 2003
  • We propose a high voltage dc-dc converter for a CW (continuous wave) $CO_2$ laser system using a current resonant half-bridge inverter and a Cockcroft-Walton circuit. This high voltage power supply includes a 2-stage voltage multiplier driven by a regulated half-bridge series resonant inverter. The inverter drives a step-up transformer and the secondary transformer is applied to the voltage multiplier. It is highly efficient because of the reduced amount of switching losses by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up secondary transformer combined with the Cockroft-Walton circuit. We obtained a maximum laser output power of 44 W and a maximum system efficiency of over 16%.

DC Voltage Balancing Control of Half-Bridge PWM Inverter for Liniear Compressor of Refrigerator (냉장고의 선형압축기 구동을 위한 단상 하프브리지 인버터 시스템에서 직류단 불평형 보상에 관한 연구)

  • Kim, Ho-Jin;Kim, Hyeong-Jin;Kim, Dong-Youn;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.256-262
    • /
    • 2017
  • This paper presents the control algorithm of a single-phase AC/DC/AC PWM converter for the linear compressor of a refrigerator. The AC/DC/AC converter consists of a full-bridge PWM converter for the control of the input power factor and a half-bridge PWM inverter for the control of the single-phase linear compressor. At the DC-link of this topology, two capacitors are connected in series. These DC-link voltages must be balanced for safe operation. Thus, a new control method of DC voltage balancing for the half-bridge PWM inverter is proposed. The balancing algorithm uses the Integral-Proportional controller and inserts the DC-offset current at the Proportional-Resonant current controller of the inverter to solve the DC-link unbalanced voltages between the two capacitors. The proposed algorithm can be easily implemented without much computation and additional hardware circuit. The usefulness of the proposed algorithm is verified through several experiments.

ESP by using Half-bridge ZCS resonant inverter and Cockroft-Walton circuit (Half-Bridge ZCS resonant inverter 및 Cockroft-Walton회로를 사용한 공기 청정기에 관한 연구)

  • Park, Jong-Woong;Jeong, Jong-Jin;Chung, Hyun-Ju;Joung, Jong-Han;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1951-1953
    • /
    • 2004
  • In this study, we propose a small high voltage power supply which use a half-bridge ZCS resonant and Cockroft-Walton on circuit, for ESP (Electrostatic Precipitator). This power supply transfers energy from ZCS resonant inverter to step-up transformer and the transformer secondary is applied to the Cockroft-Walton circuit for generating high voltage as discharging source of electrodes. It is highly efficient because its amount of switching losses are reduced by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up transformer secondary combined with the Cockroft-Walton circuit. From these results, the best operational condition is obtained at the switching frequency of 9 kHz and the duty ratio of 50 % in this ESP.

  • PDF

Compensation of Current Offset Error in Half-Bridge PWM Inverter for Linear Compressor

  • Kim, Dong-Youn;Im, Won-Sang;Hwang, Seon-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1593-1600
    • /
    • 2015
  • This paper proposes a novel compensation algorithm of current offset error for single-phase linear compressor in home appliances. In a half-bridge inverter, current offset error may cause unbalanced DC-link voltage when the DC-link is comprised of two serially connected capacitors. To compensate the current measurement error, the synchronous reference frame transformation is used for detecting the measurement error. When an offset error occurs in the output current of the half-bridge inverter, the d-axis current has a ripple with frequency equal to the fundamental frequency. With the use of a proportional-resonant controller, the ripple component can be removed, and offset error can be compensated. The proposed compensation method can easily be implemented without much computation and additional hardware circuit. The validity of the proposed algorithm is verified through experimental results.

Design of a Single-stage Electronic Ballast using a Half-Bridge Resonant Inverter

  • Son, Young-Dae
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.104-111
    • /
    • 2001
  • The design procedures and experimental results of a single-stage electronic ballast using half-bridge resonant inverter are presented in this paper. The proposed topology is based on a single-stage ballast which combines a boost converter and a half-bradge series resonant inverter. High power factor is achieved by using the boost semi-stage operating in discontinuous conduction mode and inverter semi-stage operated above resonant frequency to provide zero voltage switching is empolyed to ballast the fluorescent lamp Experimental results from the ballast system with 36W fluorescent

Design of 1.5kW PCS Using Interleaved Full-Bridge Converter and Single Phase Half-Bridge Inverter (인터리브드 풀 브릿지 컨버터와 단상 하프 브릿지 인버터를 이용한 1.5kW급 PCS 설계)

  • Na, Kwang-Su;Na, Jong-Kuk;Lee, Hee-Jun;Shin, Soo-Cheol;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.403-404
    • /
    • 2013
  • In this paper, a PCS which consists of high boost interleaved full-bridge converter and single phase half-bridge inverter is proposed. Proposed PCS is using two full bridge converter modules. PCS consists of parallel input / serial output. It can reduce turn ratio of high frequency transformer. In this paper, PCS which is using 1.5[kW] interleaved full-bridge converter and single phase half bridge inverter is designed and verified stability of system through experiment.

  • PDF

A Design of Electronic Ballast for 400[W] High Pressure Sodium Lamp Using IsSPICE (IsSPICE를 이용한 400[W] 고압나트륨 램프용 전자식 안정기 설계)

  • Kong, Eung-Seok;Shin, Dae-Chul;Choi, Choung-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.27-34
    • /
    • 2004
  • In this paper, we designed the electronic ballast for the 400[W] hight pressure sodium lamp using the half-bridge inverter Inductance and capacitance in the proposed equivalent LC series resonant circuit are calculated theoretically. We performed the simulation of the LC series half-bridge inverter circuit using the IsSPICE and the electronic ballast for the high pressure sodium lamp were implemented for verifing the simulation results. In the experimental results, the specification of the implemented electronic ballast are almost same with the simulated one. The experimental results show the good performance as PF 99.3[%], $A_{THD}$ 10.01[%], lamp efficiency 119[lm/W] at the output 400[W].].

Loss analysis for the novel half bridge inverter with load free-wheeling mode (부하 환류모드를 제공하는 새로운 반 브리지 인버터의 손실해석)

  • Yeon, Jae-Eul;Cho, Kyu-Min;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.216-219
    • /
    • 2003
  • The resonant inverter is widely used for induction heating, electronic ballast and supersonic motor driving circuit. In the meantime, control techniques of PWM, PFM etc.. are mainly applied to control the output power of the resonant inverter. But, in the case of using the half bridge resonant inverter, it is difficult to control the output power by PWM, because its main circuit does not provide the load free-wheeling mode. Therefore, PAM or PFM was usually applied to control output power of half bridge resonant inverter. However, PAM needs a variable DC voltage source, which makes the system structure more complex. On the other hand, in case of PFM, efficiency is declined by operation with poor power factor. This paper Proposed the novel half bridge resonant inverter which can provide the load free-wheeling mode. Also its analysis results for PWM operation with unity fundamental power factor are Presented and compared with other resonant inverters using PWM and PFM.

  • PDF

Zero Voltage Switching(ZVS) Dual Half-Bridge Inverter with Wide Input Voltage Range for LCD Backlight Driver (넓은 범위의 ZVS동작을 갖는 LCD Backlight 구동용 Dual Half Bridge Inverter)

  • Jung, Young-Jin;Han, Sang-Kyoo;Roh, Chung-Wook;Hong, Sung-Soo;SaKong, Suk-Chin;Kwon, Gi-Hyun;Lee, Hyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.144-146
    • /
    • 2007
  • 본 논문에서는 고효율 LCD Backlight 구동을 위해 주로 사용하던 Phase shift Full bridge 방식을 대신할 수 있는 Dual Half Bridge Inverter를 제안하였다. 제안된 회로는 일반적인 Push-Pull 인버터 구동용 제어 IC의 출력 신호 2개로 스위치 4개를 제어할 수 있으며 넓은 범위의 ZVS(zero voltage switching)을 보장하여 소자 발열 및 효율 상승의 이점을 가진다. 제안된 Inverter Topology를 소개하며 동작모드 해석과 시뮬레이션 및 실험을 통한 검증결과를 제시 한다.

  • PDF

Design of New Current Full-Bridge Resonant Inverter for Induction Heating System (유도가열 시스템을 위한 새로운 전류형 풀-브릿지 공진형 인버터 설계)

  • Lee, Sang-Hun;Lim, Sang-Kil;Song, Seung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.59-69
    • /
    • 2012
  • There are two types of inverters that are generally used in induction heating systems: voltage type inverters and high-frequency half-bridge inverters. This paper proposes a new resonant inverter for induction heating systems using the current type full-bridge method. The proposed method can remove capacitors at the input end, and enables unity power factor operation by preventing phase differences of voltage and current. Furthermore, Zero Voltage Switching (ZVS) which is in tune with current type inverter can be adopted and continuous power adjustment is possible through duty ratio changes and frequency modulation in switching operation. Simulations and experiments showed that the proposed current type full-bridge resonant inverter could be used for unity power factor control and ZVS operation in induction heating systems.