• Title/Summary/Keyword: Hair cells

Search Result 322, Processing Time 0.02 seconds

The Effects of Microcurrent Stimulation on the Astrocytes Proliferation at Injured Brain of Rabbit (극저전류자극이 손상된 토끼 뇌의 별아교세포 증식에 미치는 효과)

  • Kim, Ji-Sung;Min, Kyoung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.3
    • /
    • pp.107-119
    • /
    • 2002
  • Astrocyte, which shares the greatest part of the brain (about 25%), is a land of glial cell that composes the central nervous system along with microglia, ependymal cell and oligodendroglia. It has 7-9nm of fibers in its cytoplasma, which are composed of glial fibrillary acidic protein (GFAP) and vimentin. As for the functions of the astrocyte, it has, so far, been supposed that the astrocyte will play a cytoskeletal role in maintaining the structure of the cerebrum, play a role as a blood-brain barrier so that it can induce migration of the neuron in its development and substances in the blood cannot go into the nervous tissue, and a role of immunology and phagocytosis. However, it was revealed today that it will be a role in preventing expansion of injury by attaching itself to the connective tissue such as the vessel and the pia mater when the nervous tissue or the arachnoid is injured. Microcurrent stimulation can control current, on the basis of A unit. That is, with such devices using it, it is possible to sense, from the outside, the injured current(wound current) of the lesion and to change it into the normal current, thereby promoting the restoration of the cells. In order to examine the effects of microcurrent stimulation on the injured astrocytes in the rabbits, this study was conducted with 24 New Zealand White Rabbit as its subjects, which were divided into 8 animals of the experiment group and 16 animals of the control group. After the animals in the experiment group were fixed to the stereotaxic apparatus, their hair was removed and their premotor area(association area) perforated by the micro-drill for skull-perforation with the depth of 8mm from the scalp. In one week after the injury, 4 animals in the control group and 8 animals in the experiment group were sacrificed and examined with immunohistochemical method. And in three weeks, the remaining 4 animals in the control group and 8 animals in the experiment group were also sacrificed and examined with the same way. The conclusion has been drawn as follows : In the control group sacrificed in one week after the injury, the astrocytes somewhat increased, compared with the normal animals, and in the group sacrificed in three weeks after the injury, they increased more (p < 0.05). The experiment group A in one week showed a little increase, but there was no significant differences, but the experiment group in three weeks showed more increase, compared with the experiment group in one week (p < 0.05). The experiment group B in one week showed more increase than the control group or the experiment group A, and the experiment group in three weeks showed more increase than the experiment group in one week (p < 0.05). Among the astrocytes, fibrous astrocytes were mostly observed, increasing as they are close to the lesion, and decreasing as they are remote from it. The findings show that microcurrent can cause the astrocytes to proliferate and that it will be more effective to stimulate the cervical part somewhat remote from the lesion rather than to directly stimulate the part of the lesion. Thus, microcurrent stimulation can be one of the methods that can activate the reaction of astrocytes, which is one of the mechanism for treating cerebral injury with hemorrhage. Therefore, this study will be used as basic research data for promoting restoration of functions in the patient with injury in the central nervous system.

  • PDF

Effect of Graviola Leaves Extracts on Antioxidant Activity and Melanin Production (멜라닌 생성 및 항산화 활성에 미치는 그라비올라 잎 추출물의 영향)

  • Lee, Kyuwon;Jang, Jiwon;Park, Sumin;Kang, Kihun;Yoon, Hyesoo;Ha, Yejin;Jeon, Sojeong;Ko, Hye Ju;Kim, Moon-Moo;Oh, Yunghee
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.662-670
    • /
    • 2019
  • The purpose of this study was to investigate the effect of methanolic extracts of graviola, Annona muricate leaves (AMME) on antioxidant activity and melanin production. First of all, DPPH radical and reducing power were performed to determine the antioxidant effect of AMME and organic solvent fractions. AMME and organic solvent fractions showed antioxidative activity in a concentration dependent manner. The ethyl acetate fraction of AMME among organic solvent fractions showed the highest antioxidant activity. Moreover, tyrosinase activity was performed to confirm the effect of organic fractions on melanin production. AMME, ethyl acetate, and hexane fractions increased tyrosinase activity a dose dependent manner. Next, the hexane fraction with the best effect on melanin synthesis in AMME organic solvent fraction was divided into 12 fractions by silica column chromatography. Among them, the fraction 7 and 8 showed the highest DPPH radical scavenging activity and reducing power. In addition, the fraction 7 and 8 at $64{\mu}g/ml$ showed melanin synthesis by 260% and 184%, respectively. Finally, the fraction 8 at $4{\mu}g/ml$ showed melanin synthesis by 34% in B16F1 cells. LC-MS analysis showed that fraction 7 and fraction 8 have a molecular weight of 617 and 619, respectively. FT-IR analysis showed that fractions 7 and 8 is similar to bis(2-hydroxyethly)dimerate. Above results suggest that graviola leaves extracts could be applicable to the development of natural antioxidants or hair cosmetics which are related to the promoting effect of melanin production.