• Title/Summary/Keyword: Hadong anorthosites

Search Result 4, Processing Time 0.015 seconds

Occurrence and Deformation of Fe-Ti ores from the Proterozoic Hadong Anorthosites, Korea (원생대 하동회장암체 내 철-티탄 광체의 산상과 변형)

  • Jung, Jae-Sung;Kim, Jong-Sun;Cho, Hyeong-Seong;Song, Cheol-Woo;Son, Moon;Ryoo, Chung-Ryul;Chi, Sei-Jeong;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.31-49
    • /
    • 2010
  • Nearly NS-trending Fe-Ti ore bodies intermittently occur in the Hadong anorthosites, south Korea, irrespective of the rock types of the anorthosites. In order to determine their occurrence mode and deformation history, we collected the features of occurrence and geological structures in the field, petrographic features using thin sections of the principal constituent rocks, and geochemical data of ilmenites in the ore body using electron probe microanalysis. Fe-Ti ore bodies examined in this study are divided into two types: dike- and lamina-types. It is steadily supported that the dike-type has intruded into the anorthositic rocks after their emplacement and solidification. And the laminar-type is probably a result of the mylonitization and transposition of the dike-type ore bodies parallel to the shear planes, due to later strong dextral ductile shearing. In the meantime, the Fe-Ti ore bodies have experienced the stronger dextral shearing in the more northern part of the study area, i.e. Cheongryong-ri, Wolhoeng-ri, Jonghwa-ri, and Jayangri and Baekun-ri in ascending order of its strength, together with the less content of $TiO_2$. All ilmenites of the ore bodies have very similar chemical composition, as pure ilmenite of 52~55 wt.% in $TiO_2$ content, irrespective of the occurrence mode and degree of later ductile shearing of the ore bodies. And they didn't experience to exsolve into magnetite. The structural data indicate that the Hadong anorthosites have deformed by NNE-trending folding, intrusion of the Fe-Ti ore bodies, NNW~NNE-trending dextral ductile shearing, NW~NNW-trending sinistral semi-brittle shearing, and intrusion of NNE~NE-trending mafic dykes in descending order of chronology after the formation of foliation of the anorthositic rocks. The foliation is interpreted as a result of the accumulation of crystals that settle out from the magma by the action of gravity.

Occurrence of REE-bearing Allanite with Th-mineral (thorite) in Wolhoengri, Hadong, Korea (하동군 월횡리에서 토륨광물과 수반된 함REE 갈렴석의 산출상태)

  • Choi, Jin Beom;Kwak, Ji Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.295-304
    • /
    • 2012
  • Ilmenite mine was developed in the anorthosites which intruded Precambrian Jirisan gneiss complex in Wolheongri, Okjong-myeon, Hadong. Ti-ore bodies are confined to the intercumulated type anorthosites, where REE-bearing allanite occurred as veins. The chemistry of allanites shows relatively low in CaO (11.02~12.81 wt%), but high in ${\Sigma}R_2O_3$ (R = Ce, La, Nd) (17.21~21.58 wt%), respectively. Abnormally high radioactive detection ascribes to the presence of small particles of thorium mineral known as thorite ($ThSiO_4$). Thorite shows 65~72.78 wt% ($ThO_2$) and 5.49~12.78 wt% ($UO_2$) in composition. The radioactive prospecting could be a strong tool to find REE-bearing allanite which is closely associated with Ti-ore deposits.

Oxygen and Hydrogen Isotope Studies of Fluid-Rock Interaction of the Radons-Sancheong Anorthositic Rocks (하동-산청 회장암질암의 유체-암석 상호반응에 대한 산소와 수소 동위원소 연구)

  • Park Young-Rok;Ko Bokyun;Lee Kwang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.224-237
    • /
    • 2004
  • The anorthositic rocks of the study area are divided into the northern Sancheong and southern Hadong anorthositic rocks depending on the different distribution patterns and lithologies. In order to evaluate the characteristics of the hydrothermal systems developed in the study area, oxygen and hydrogen isotopic compositions of the anorthositic rocks were measured. Oxygen isotopic values of the plagioclase exhibit an interesting spatial distribution. Plagioclase collected from the Sancheong anorthositic rocks in the northern part tends to have a relatively restricted range of $\delta$$^{18/0}$ values between 7.3 and 8.8$\textperthousand$, which are heavier than 'normal' $\delta$$^{18/O}$ value (6-6.5$\textperthousand$) typical for plagioclase of the fresh mantle-derived anorthosite, whereas plagioclase from the southern part is characterized by a wide range of $\delta$$^{18/O}$ values between -4.4 and 8.2$\textperthousand$ and much lighter values than 'normal' value for plagioclase of the fresh mantle-derived anorthosite. Plagioclase from the middle part has $\delta$$^{18/O}$ values heavier than the plagioclase from the southern part, but lighter than that from the northern part. The spatial distribution of $\delta$$^{18/O}$ values suggests that the decoupled hydrothermal flow systems might have been developed in the study area. Meteoric water dominated in the hydrothermal flow systems developed in the southern area, whereas magmatic fluid dominated in the northern area. The relationship between water content and hydrogen isotopic composition of anorthosites shows a positive correlation. The positive correlation indicates that fluids exsolved from magma during magmatic differentiation caused deuteric alteration of anorthositic rocks involving replacement of pyroxenes to amphiboles. After the deuteric alteration, hydrothermal system developed by meteoric water dominated the southern area, and erased record of the hydrothermal system developed by magmatic fluid at earlier stage. However, the development of meteoric hydrothermal system has been limited in the southern area only, and could not affect the Sancheong anorthositic rocks in the northern area. The abundant occurrences of secondary alteration minerals such as sericite, calcite, and chlorite in the southern Hadong anorthosite relative to the northern Sancheong anorthositc seem to be related to the overlapping of two distinct hydrothermal systems in the southern area.

Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their genetic relationship (지리산 지역 차노카이트와 함티탄철석 회장암질암의 Sm-Nd 광물연대 및 성인적 관계)

  • 박계헌;김동연;송용선
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 2001
  • The charnockite of Jirisan area occurs within the Precambrian high grade metamorphic terrane associated with anorthosite body as many foreign examples. Sm-Nd ages were determined from whole rock-garnet pairs, which turned out $1827\pm$32($2\sigma$) Ma for the massive charnockite and $1820\pm$22(2$\sigma$) Ma for the foliated charnockite with $$\varepsilon$_{Nd}(T)$ of $-5.5\pm$0.2 and $-6.0\pm$0.5 respectively. $^{87}Sr/^{86}Sr$ initial ratios calculated with the these ages are 0.71319 and 0.71532 respectively. The fact that massive and foliated charnockites show identical age, identical Nd isotopic initial ratio, and similar Sr isotopic initial ratios suggest that they were generated at the same time from the same material even through their present textures are different. Initial ratios of Nd and Sr of the charnockites are quite distinct from the mantle values indicating the influence of continental crust. Sm-Nd age determined from the titanium bearing anorthositic rocks intruding the anorthosite body, using mineral separates of garnet, plagioclase, and mafic fraction, is $1792\pm$90(2$\sigma$) Ma with $$\varepsilon$_{Nd}(T)=-3.9$\pm$0.2$. The ^${87}Sr/^{86}Sr$ initial ratios calculated with this age are 0.70616~0.70619. The charnockites and the anorthositic rocks occurring in contact each other also reveal the same age within the error, which suggest a genetic relationship between them. However, chemical compositions of the charnockites and Hadong-Sancheong anorthosites cannot be explained by igneous differentiation. Their differences in Nd and Sr initial isotopic ratios indicate different source materials. Therefore, temporal association between them suggests the possibility of the anorthosite acting as a thermal source for the generation of the charnockite as other studies.

  • PDF