• Title/Summary/Keyword: Hadamard Matrices

Search Result 51, Processing Time 0.022 seconds

TWO INEQUALITIES INVOLVING HADAMARD PRODUCTS OF POSITIVE SEMI-DEFINITE HERMITIAN MATRICES

  • Cao, Chong-Guang;Yang, Zhong-Peng;Xian Zhang
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.101-109
    • /
    • 2002
  • We extend two inequalities involving Hadamard Products of Positive definite Hermitian matrices to positive semi-definite Hermitian matrices. Simultaneously, we also show the sufficient conditions for equalities to hold. Moreover, some other matrix inequalities are also obtained. Our results and methods we different from those which are obtained by S. Liu in [J. Math. Anal. Appl. 243:458-463(2000)] and B.-Y Wang et al in [Lin. Alg. Appl. 302-303: 163-172(1999)] .

Expanding Generalized Hadamard Matrices over $G^m$ by Substituting Several Generalized Hadamard Matrices over G

  • No, Jong-Seon;Song, Hong-Yeop
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.361-364
    • /
    • 2001
  • Over an additive abelian group G of order g and for a given positive integer $\lambda$, a generalized Hadamard matrix GH(g, $\lambda$) is defined as a gλ$\times$gλ matrix[h(i, j)], where 1 $\leq i \leqg\lambda and 1 \leqj \leqg\lambda$, such that every element of G appears exactly $\lambd$atimes in the list h($i_1, 1) -h(i_2, 1), h(i_1, 2)-h(i_2, 2), …, h(i_1, g\lambda) -h(i_2, g\lambda), for any i_1\neqi_2$. In this paper, we propose a new method of expanding a GH(g^m, \lambda_1) = B = [B_{ij}] over G^m$ by replacing each of its m-tuple B_{ij} with B_{ij} + GH(g, $\lambda_2) where m = g\lambda_2. We may use g^m/\lambda_1 (not necessarily all distinct) GH(g, \lambda_2$)s for the substitution and the resulting matrix is defined over the group of order g.

  • PDF

A Simple Matrix Factorization Approach to Fast Hadamard Transform (단순한 메트릭스 계승접근에 의한 고속 아다마르 변환)

  • Lee, Moon-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.173-176
    • /
    • 1987
  • This paper presents a simple factorization of the Hadamard matrix which is used to develop a fast algorithm for the Hadamard transform. This matrix decomposition is of the kronecker products of identity matrices and successively lower order Hadamard matrices. This following shows how the Kronecker product can be mathematically defined and efficiently implemented using a factorization matrix methods.

  • PDF

The multidimensional subsampling of reverse jacket matrix of wighted hadamard transform for IMT2000 (IMT2000을 위한 하중 hadamard 변환의 다차원 reverse jacket 매트릭스의 서브샘플링)

  • 박주용;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2512-2520
    • /
    • 1997
  • The classes of Reverse Jacket matrix [RJ]$_{N}$ and the corresponding Restclass Reverse Jacket matrix ([RRJ]$_{N}$) are defined;the main property of [RJ]$_{N}$ is that the inverse matrices of them can be obtained very easily and have a special structure. [RJ]$_{N}$ is derived from the weighted hadamard Transform corresponding to hadamard matrix [H]$_{N}$ and a basic symmertric matrix D. the classes of [RJ]$_{2}$ can be used as a generalize Quincunx subsampling matrix and serveral polygonal subsampling matrices. In this paper, we will present in particular the systematical block-wise extending-method for {RJ]$_{N}$. We have deduced a new orthorgonal matrix $M_{1}$.mem.[RRJ]$_{N}$ from a nonorthogonal matrix $M_{O}$.mem.[RJ]$_{N}$. These matrices can be used to develop efficient algorithms in IMT2000 signal processing, multidimensional subsampling, spectrum analyzers, and signal screamblers, as well as in speech and image signal processing.gnal processing.g.

  • PDF

AN INEQUALITY ON PERMANENTS OF HADAMARD PRODUCTS

  • Beasley, Leroy B.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.633-639
    • /
    • 2000
  • Let $A=(a_{ij}\ and\ B=(b_{ij}\ be\ n\times\ n$ complex matrices and let A$\bigcirc$B denote the Hadamard product of A and B, that is $AA\circB=(A_{ij{b_{ij})$.We conjecture a permanental analog of Oppenheim's inequality and verify it for n=2 and 3 as well as for some infinite classes of matrices.

  • PDF

Key Agreement Protocol Using Sylvester Hadamard Matrices

  • Choe, Chang-Hui;Lee, Moon-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.211-213
    • /
    • 2011
  • In this paper, we propose a key agreement protocol using Sylvester Hadamard matrices. Users obtain their common key by using a matrix shared in advance. Matrix construction is very simple, and the computation is quite fast. The proposal will be useful for communication between two users, especially for those having low computing power.

A Class of Binary Cocyclic Quasi-Jacket Block Matrices

  • Lee Moon-Ho;Pokhrel Subash Shree;Choi Seung-Je;Kim Chang-Joo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • In this paper, we present a quasi-Jacket block matrices over binary matrices which all are belong to a class of cocyclic matrices is the same as the Hadamard case and are useful in digital signal processing, CDMA, and coded modulation. Based on circular permutation matrix(CPM) cocyclic quasi block low-density matrix is introduced in this paper which is useful in coding theory. Additionally, we show that the fast algorithm of quasi-Jacket block matrix.

THE GENERALIZATION OF STYAN MATRIX INEQUALITY ON HERMITIAN MATRICES

  • Zhongpeng, Yang;Xiaoxia, Feng;Meixiang, Chen
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.673-683
    • /
    • 2009
  • We point out: to make Hermtian matrices A and B satisfy Styan matrix inequality, the condition "positive definite property" demanded in the present literatures is not necessary. Furthermore, on the premise of abandoning positive definite property, we derive Styan matrix inequality of Hadamard product for inverse Hermitian matrices and the sufficient and necessary conditions that the equation holds in our paper.

  • PDF

Extended Hadamard Codes for Spectral-Amplitude-Coding Optical CDMA (Spectral-Amplitude-Coding Optical CDMA를 위한 Extended Hadamard Code)

  • Jhee, Yoon-Kyoo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.10-15
    • /
    • 2010
  • Good performance of spectral-amplitude-coding optical CDMA can be obtained using codes based upon Hadamard matrices, but Hadamard codes have very restrictive code lengths of $2^n$. In this paper a new code family, namely extended Hadamard code, is proposed to relax the code length restriction and the number of simultaneous users. The improved performance of the proposed system is analysed with the consideration of phase-induced intensity noise(PIIN).