• Title/Summary/Keyword: HYDRUS-1D

Search Result 4, Processing Time 0.02 seconds

Estimation of deep percolation using field moisture observations and HYDRUS-1D modeling in Haean basin (해안분지의 현장 토양수분 관측과 HYDRUS-1D 모델링을 이용한 지하수 함양 추정)

  • Kim, Jeong Jik;Jeon, Woo-Hyun;Lee, Jin-Yong
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.545-556
    • /
    • 2018
  • This study was conducted to estimate the deep percolation using numerical modeling and field observation data based on rainfall in Haean basin. Soil moisture sensors were installed to monitoring at 30, 60 and 90 cm depths in four sites (YHS1-4) and automatic weather station was installed to around YHS3. Soil moisture and meteorological data was observed from March 25, 2017 to March 25, 2018 and May 06, 2016 to May 06, 2018, respectively. Numerical analysis was performed from June to August, 2017 using the HYDRUS-1D. Average soil moisture contents were high to generally in YHS3 for 0.300 to $0.334m^3/m^3$ and lowest in YHS1 for 0.129 to $0.265m^3/m^3$ during the soil moisture monitoring period. The results of soil moisture flow modeling showed that field observations and modeling values were similar but the peak values were larger in the modeling result. Correlation analysis between observation and modeling data showed that r, $r^2$ and RMSE were 0.88, 0.77, and 0.0096, respectively. This show high correlation and low error rate. The total deep percolation was 744.2 mm during the period of modelling at 500 cm depth. This showed that 61.3% of the precipitation amount (1,214 mm) was recharged in 2017. Deep percolation amount was high in the study area. This study is expected to provide basic data for the estimation of groundwater recharge through unsaturated zone.

Simulation of Water Movement in Rockwool Slab as Soil-less Cultivation Using HYDRUS (HYDRUS를 이용한 작물재배용 암면배지에서의 수분 이동 시뮬레이션)

  • Dong-Hyun Kim;Jong-Soon Kim;Soon-Hong Kwon;Jong-Min Park;Won-Sik Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.153-162
    • /
    • 2023
  • It is important to determine water movement at the growing substrate used in soil-less cultivation for better management of water supply. Numerical simulation is a fast and versatile approach to evaluate highly accurate water distribution. The objective of this study is to simulate the water movement in rockwool as a soil-less medium using HYDRUS-2D. HYDRUS-2D was used to simulate the spatial and temporal water movement in two types of rockwool slabs (Floriculture (FL), high density; Expert (EP), low density). The simulation was performed at two pulse conditions: 10 min ON and 50 min OFF (case A), 20 min ON and 40 min OFF (case B). The total irrigation amounts were the same at both cases. In case A, during the irrigation ON, the water contents at FL increased 1.93-fold faster than the values at EP. Whereas, during the irrigation OFF, the decreasing rate of water contents at FL was almost the same as one at EP. At case B, these values were not changed much from case A. However, the duration of optimum water content (50% - 80%) was 15.0 min and 23.5 min at case A and case B, respectively. Thus, FL and 20 min ON and 40 min OFF (case B) could supply water to rockwool much faster and longer than EP. Once qualitatively validated, this simulation of water movement in rockwool could be used to design an effective optimum irrigation method for vegetables.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

Study on Characteristics of Transient Soulte Transport in the Vadose Zone by Using TDR: (2) Application (TDR(Time Domain Reflectometry)를 이용한 비포화 토양에서 천이상태의 오염원 이송확산 특성에 관한 연구 : (2) 적용)

  • Park, Jae-Hyeon;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.751-762
    • /
    • 1999
  • In this study, a 1-D laboratory experiment was conducted to investigate the characteristics of transient unsaturated solute transport by using two kinds of soils of which properties were known by test. Especially the TDR method which is proposed in this study was used to measure water content and solute concentration. As results, in the transient flow, the wetting front moves down rapidly, and the distribution of solute concentration near the wetting front showed the similar type of the water content distribution(semi-bell type). A numerical model HYDRUS was used to compare with the experimental results. Numerical results for the water movement are similar to experimental result. However, numerical results of the distribution of solute concentration are more scattered than experimental results. It means that measured dispersivity, numerical dispersion, adsorption coefficient, and soil sample size etc. should be considered in order to determine the dispersivity used in the numerical model. The present measuring method was proved to be superior to other formula and to be an available method to apply to solute transport test. The measuring error of the developed method is estimated smaller than 10% while water content is larger than 0.15.

  • PDF