• Title/Summary/Keyword: HWZPR

Search Result 3, Processing Time 0.022 seconds

Investigating Dynamic Parameters in HWZPR Based on the Experimental and Calculated Results

  • Nasrazadani, Zahra;Behfarnia, Manochehr;Khorsandi, Jamshid;Mirvakili, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1120-1125
    • /
    • 2016
  • The neutron decay constant, ${\alpha}$, and effective delayed neutron fraction, ${\beta}_{eff}$, are important parameters for the control of the dynamic behavior of nuclear reactors. For the heavy water zero power reactor (HWZPR), this document describes the measurements of the neutron decay constant by noise analysis methods, including variance to mean (VTM) ratio and endogenous pulse source (EPS) methods. The measured ${\alpha}$ is successively used to determine the experimental value of the effective delayed neutron fraction as well. According to the experimental results, ${\beta}_{eff}$ of the HWZPR reactor under study is equal to 7.84e-3. This value is finally used to validate the calculation of the effective delayed neutron fraction by the Monte Carlo methods that are discussed in the document. Using the Monte Carlo N-Particle (MCNP)-4C code, a ${\beta}_{eff}$ value of 7.58e-3 was obtained for the reactor under study. Thus, the relative difference between the ${\beta}_{eff}$ values determined experimentally and by Monte Carlo methods was estimated to be < 4%.

Measurement of safety rods reactivity worth by advanced source jerk method in HWZPR

  • Nasrazadani, Z.;Ahmadi, A.;Khorsandi, J.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.963-967
    • /
    • 2019
  • Accurate measurement of the reactivity worth of safety rods is very important for the safe reactor operation, in normal and emergency conditions. In this paper, the reactivity worth of safety rods in Heavy Water Zero Power Reactor (HWZPR) in the new lattice pitch is measured by advanced source jerk method. The average of the results related to two different detectors is equal to 29.88 mk. In order to verify the result, this parameter was compared to the previously measured value by subcritical to critical approach. Different experiment results are finally compared with corresponding calculated result. Difference between the average experimental and calculated results is equal to 2.2%.

Investigating Heavy Water Zero Power Reactors with a New Core Configuration Based on Experiment and Calculation Results

  • Nasrazadani, Zahra;Salimi, Raana;Askari, Afrooz;Khorsandi, Jamshid;Mirvakili, Mohammad;Mashayekh, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18-20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)-CITATON codes. To investigate the criticality of this core, the effective multiplication factor ($K_{eff}$) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of $D_2O$, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.