• Title/Summary/Keyword: HVDC transmission

Search Result 141, Processing Time 0.034 seconds

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

Methodology for Determining of Generator Operation Point for Ensuring Voltage Stability Against Generator Faults in Jeju-Haenam HVDC System

  • Kang, Sang-Gyun;Seo, Sang-Soo;Lee, Byong-Jun;Joo, Joon-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • This paper presents a new algorithm for determining generator operation point for maintaining stability considering generator faults in Jeju-Haenam HVDC system. As the HVDC system consumes reactive power for the transmission of active power substantially, compensation of reactive power is essential. And the HVDC system is operated on frequency control mode. That is to say, the HVDC system almost manages system frequency. Therefore, we recognized that the Jeju system could be unstable if the reactive power consumed by the HVDC is insufficient when out-of-step occurs with large generators. When the solution of power flow analysis does not converge due to the unstable system phenomenon, we have difficulty in establishing countermeasures as the post-fault information is not available. In this paper, for the purpose of overcoming this difficulty in establishing countermeasures, we introduce the CPF(Continuation Power Flow) algorithm. This paper suggests an algorithm for calculating the output limitation of the generator to maintain the stability in case of generator fault in the Jeju system.

The Basic Study on Overvoltage of HVDC Transmission Line Using TNA (계통과도전압분석기를 이용한 직류송전선로의 과전압에 대한 기초적 해석)

  • Woo, Jung-Wook;Shim, Jeong-Woon;Kwak, Joo-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1810-1812
    • /
    • 1997
  • This paper describes the results of ground fault analysis on HVDC Transmission Line using TNA (Transient Network Analyzer). The maximum overvoltage is about 1.7 p.u. in the case of single line to ground fault on the overhead transmission line. When the cable is linked to the end of the overhead transmission line, the maximum overvoltage is about 1.58 p.u..

  • PDF

Development of HVDC 500kV PPLP MI cable systems in Korea (HVDC 500kV PPLP MI 케이블시스템 개발)

  • Lee, Soo-bong;Cho, Dong-sik;Lee, Tae-ho;Kim, Sung-yun;Lee, Su-kil;Jeon, Seung-ik
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1202-1203
    • /
    • 2015
  • This paper describes the development of HVDC ${\pm}500kV$ polypropylene laminated paper (PPLP) mass-impregnated (MI) type cable system for HVDC transmission lines. As you know, mass-impregnated type cable generally has only insulating layer with the Kraft paper impregnated with a high-viscosity insulating compound. But polypropylene laminated paper is made of a layer of extruded polypropylene (PP) film sandwiched between two layers of Kraft paper. Thanks to PP film and its combination with Kraft paper, PPLP has higher AC, Impulse (Imp.) and DC breakdown (BD) strengths as well as lower dielectric loss than conventional Kraft paper insulation. In addition, Kraft MI cable has a limitation for the maximum conductor temperature as $55^{\circ}C$ But this PPLP MI cable has higher maximum conductor temperature than that of Kraft MI cable due to advantage of oil drainage characteristics. It is the most economic type of cable for HVDC transmission. Also HVDC ${\pm}500kV$ PPLP MI cable system was developed including land joints and outdoor-terminations. In order to prove the mechanical and electrical performances, the type test was carried out according to CIGRE recommendations. A full scale cable system has been tested successfully. And additional load cycle and polarity reversal tests on the cable system showed a higher performance compared with a similar mass impregnated paper cable.

  • PDF

A New Synthetic Test Circuit for Testing Thyristor Valve in HVDC Converter (HVDC 컨버터의 Thyristor Valve 시험을 위한 새로운 합성시험회로)

  • Kim, Kyeong-Tae;Han, Byung-Moon;Jung, Jae-Hun;Nho, Eui-Cheol;Chung, Yong-Ho;Baek, Seung-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 2012
  • This paper proposes a new synthetic test circuit (STC) to confirm the switching operation of thyristor valve in HVDC converter. The proposed STC uses a 6-pulse thyristor converter with 2-phase chopper as a high-current source to provide turn-on current to the test valve. The operation of proposed STC was verified through theoretical analysis and computer simulations. Based on computer simulations, a hardware scaled model was built and tested to confirm the feasibility of implementing a real-size test facility. The proposed system has an advantage of simple structure and operation over the existing system.

Analysis. Design and Control of Two-Level Voltage Source Converters for HVDC Systems

  • Mohan, D. Madhan;Singh, Bhim;Panigrahi, B.K.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.248-258
    • /
    • 2008
  • The Voltage Source Converter (VSC) is replacing the conventional line commutated current source converters in High Voltage DC (HVDC) transmission systems. The control of a two-level voltage source converter and its design dealt with HVDC systems and various factors such as reactive power, power factor, and harmonics distortion are discussed in detail. Simulation results are given for the two-level converter and designed control is used for bidirectional power flow. The harmonics minimization is taken by extending the 6-pulse VSC to multipulse voltage source converters. The control is also tested and simulated for a 12-pulse voltage source converter to minimize the harmonic distortion in AC currents.

Voltage Recovery Capability of Offshore Wind Farm Connected to a Weak Grid via a VSC-HVDC (VSC-HVDC를 통한 약한 계통에 연계된 해상풍력발전시스템의 전압회복능력)

  • Phan, Dinh-Chung;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.702-703
    • /
    • 2011
  • Large offshore wind farms using high voltage direct current transmission system (HVDC) have been considered and exploited in many countries in the world. The maintenance of the stable operation of wind farm and interconnected system is an important issue, especially in the case of fault. To ensure the stable operation after fault clearance, the PCC voltage must be restored as soon as possible and meet the grid code requirement. This paper will evaluate the PCC voltage recovery ability of a large offshore wind farm as it is connected to a weak grid via a VSC-HVDC.

  • PDF

Elemination of Low Order Harmonics from STATCOM using SHE-PWM (SHE-PWM을 적용한 STATCOM에 의한 저차고조파 제거 방법)

  • Choi, Soon-Ho;Kim, Chan-Ki;Lee, Seong-Doo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.450-456
    • /
    • 2014
  • In HVDC converters that employ a line-commutated control, reactive power is absorbed by the rectifier and inverter terminals during AC/DC conversion. An AC filter usually consists of filters and large shunt capacitors to supply reactive power to the HVDC station. When STATCOM is used to supply reactive power to the HVDC system with AC filter, the low-order harmonics generated from STATCOM can result in a resonance between the shunt capacitor and AC network. Therefore, a control strategy based on selective harmonic elimination is adopted to minimize the low-order harmonics from STATCOM. The cancellation of harmonic instabilities is verified through simulations in PSCAD/EMTDC.

Improved Pre-charging Method for MMC-Based HVDC Systems Operated in Nearest Level Control

  • Kim, Kyo-Min;Kim, Jae-Hyuk;Kim, Do-Hyun;Han, Byung-Moon;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.127-135
    • /
    • 2017
  • Recently the researches on modular multi-level converter (MMC) are being highlighted because high quality and efficient power transmission have become key issues in high voltage direct current (HVDC) systems. This paper proposes an improved pre-charging method for the sub-module (SM) capacitor of MMC-based HVDC systems, which operates in the nearest level control (NLC) modulation and does not need additional circuits or pulse width modulation (PWM) techniques. The feasibility of the proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 SMs per each arm. Hardware experiments with a scaled prototype have also been performed in the lab to confirm the simulation results.

Analysis of Electric Field Distribution and Characteristics of Volume Resistivity in HDPE/EVA Film for Recycling (재활용을 고려한 HDPE/EVA필름의 전계분포 및 체적저항특성 해석)

  • Lee, Hung-Kyu;Lim, Kee-Joe;Kim, Yong-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.801-807
    • /
    • 2008
  • Recently, CV, CN-CV and CNCV-W cable are used for HVDC transmission and distribution cable. However, XLPE which is used as insulation layer of power cable has thermosetting properties. It is very difficult to recycling. In this paper, we prepared HDPE/EVA film, which the blending ratio are 80:20, 70:30, 60:40, 50;50 respectively for the purpose of recycling. Main factor such as electric field distribution and its resistivity in insulation system affected on insulation performance and reliability for HVDC applications. Therefore, electric field distribution formed by space charge and characteristics of volume resistivity was currently investigated. We suggest the possibility of utilization for HVDC insulation layer from the results.