• Title/Summary/Keyword: HVAC&R system

Search Result 30, Processing Time 0.023 seconds

Cost Analysis Study : Development of HVAC&R System Cost Estimation and Prediction Methodology for Office Buildings (사무소 건물의 HVAC&R 시스템 공사비 분석방법 및 예측에 관한 연구)

  • Cho, Jinkyun;Shin, Seungho;Kim, Jonghurn
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • HVAC&R system costs can often be one of the most expensive components, representing approximately 15% of the total construction cost for office buildings. Despite their significant importance, there is a lack of a consistent and homogeneous framework to approximate the estimate research. This research deals with the prediction methodology of HVAC&R system cost with the aim of establishing a common idea for the analysis of the construction cost estimate. Our approach deals with the concept of an HVAC&R set that is composed of subsystems. The matrix combination analysis is examined, and total 960 HVAC&R system cost estimation can be implemented to large scale office buildings.

Interaction Analysis between Cooling-to-Heating Load Ratio and Primary Energy Consumption of HVAC&R System for Building Energy Conservation (건물의 냉, 난방 부하비율과 HVAC&R 시스템 1차 에너지 소비량의 상관관계분석 및 합리적 설계방안 연구)

  • Cho, Jinkyun;Kim, Jinho;Lee, Suengjae;Kang, Hosuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.113-122
    • /
    • 2015
  • HVAC&R systems account for more than 50% of the energy consumption of buildings. The purpose of this study is to propose an optimal design method for the HVAC&R system and to examine the possibility for the energy conservation of a selected system. The energy demand for cooling and heating is determined by using TRNSYS and HEET. By an interaction between total system efficiency and cooling-to-heating load ratio, the optimal HVAC&R systems will be decided. The results showed that this proposed method is significantly capable of determining optimal system and building design for saving energy.

A Case Study on HVAC&R Energy Efficiency in Office Buildings (사무소 건물 HVAC&R 시스템의 에너지 효율화 사례연구)

  • Cho, Jin-Kyun;Woo, Kyung-Hun;Park, Woo-Pyoung;Shin, Seung-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • HVAC&R systems are the most energy consuming building services representing approximately half of the final energy use in the building sector. Despite their significant energy use, there is a lack of a consistent and homogeneous framework to efficiently guide research, mainly due to the complexity and variety of HVAC&R systems but also to insufficient rigour in their energy analysis. This research reviews energy consumption of HVAC&R systems with the aim of establishing a common idea for the analysis of energy efficiency. The paper focuses on energy flow of the HVAC&R which include air-conditioning, transport and heat generation system for low-energy buildings.

Development of an HVAC&R Systems Energy Evaluation Methodology and Simulation Program for Office Buildings (사무소 건물의 HVAC&R 시스템 에너지 분석방법 및 예측 프로그램 개발)

  • Cho, Jinkyun;Shin, Seungho;Kim, Jonghurn;Hwang, Dongkon;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.363-370
    • /
    • 2013
  • HVAC&R systems are the most energy consuming building services, representing approximately half of the final energy use in the building sector. Despite their significant energy use, there is a lack of a consistent and homogeneous framework to efficiently guide research. This research is about the energy consumptions of HVAC&R systems, with the aim of establishing a common idea for the analysis of building energy efficiency. Our approach deals with the concept of an HVAC&R set that is composed of subsystems. A matrix combination evaluation is examined, and a total of 960 sets can be implemented in a large scale office building. A method as a tool for energy evaluations of HVAC&R systems, and HEET as a energy simulation program, were developed.

Development of fault detection and diagnosis system for the heat source apparatus of building air-conditioning system (공조시스템의 열원기기에 대한 고장검출 및 진단 시스템 개발)

  • Han, Dong-Won;Park, Jong-Soo;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.30-35
    • /
    • 2008
  • This paper describes a fault detection and diagnosis (FDD) system developed for the heat source apparatus in building air-conditioning system. As HVAC&R systems in building become complex and instrumented with highly automated controllers, the processes and systems get more difficult for the operator to understand and detect the mal-functions. Poorly maintained, degraded, and improperly controlled equipment wastes an estimated 15% to 30% of energy used in commercial building. When operating a complex facility, FDD system is beneficial in equipment management to provide the operator with tools which can help in decision making for recovery from a failure of the system. Automated FDD for HVAC&R system has the potential to reduce energy and maintenance costs and improves comfort and reliability. Over the last decade there has been considerable research for developing FDD system for HVAC&R equipment. However, they are being made too much of a theoretical study, so only a small of FDD methods are deployed in the field. This study deduced an actual defect source for the heat source apparatus and suggested a low price FDD method which is ready to be deployed in the field.

  • PDF

Numerical Analysis of Axial-Flow Cyclone Separator for Subway Station HVAC System Pre-Filter

  • Kim, Myung-Joon;Kim, Ho-Joong;Kwon, Soon-Bark;Kim, Se-Young;Kim, Jin-Kwan;Shin, Chang-Hun;Bae, Sung-Joon;Hwang, Sun-Ho;Kim, Tae-Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.94-99
    • /
    • 2009
  • In the Korean subway station, three types of pre-filters, which include auto filter, electrostatic precipitator (ESP) and auto cleaning demister, are widely used. However, these devices have some problems such as the difficulty of maintenance and high operating cost. In this study, axial-flow cyclone separator was employed as a pre-filter inside a heating, ventilation, and air conditioning (HVAC) system. 3-dimensional computational fluid dynamics (CFD) analysis was performed on a single unit axial-flow cyclone and coupled unit axial-flow cyclone. Calculated and measured pressure drop of the designed axial-flow cyclone were found be comparable to other types of pre-filters and the observed cut-off diameter was less than 10 micron. Considering lower operating and maintenance cost, axial-flow cyclone was proved to be a better solution as a pre-filter.

Sound Quality Evaluation for the Vehicle HVAC System Using Optimum Layout of Damping material (제진재의 최적배치를 이용한 차량공조시스템의 음질평가)

  • Hwang, Dong-Kun;Abu, Aminudin Bin;Lee, Jung-Youn;Oh, Jae-Eung;Yoo, Dong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.629-633
    • /
    • 2005
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. In previous study, we have developed to verify identification of source for the vehicle HVAC system through multiple-dimensional spectral analysis. Also we carried out objective assessments on the vehicle HVAC noises and subjective assessments have been already performed with 30 subjects. In this study, the linear regression models were obtained for the subjective evaluation and the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Appropriation of regression model is necessary to $R^2$ value and F-value. And testing for regression model is necessary to Independence, Homoscedesticity and Normality. Also we selected optimum layout of damping material using Taguchi method. As a result of application, sound quality is improved by more quiet, powerful, expensive, smooth.

  • PDF

Improvement of Sound Quality for the Vehicle HVAC System Using Optimum Layout of Damping Material (제진재의 최적배치를 이용한 차량공조시스템의 음질개선)

  • Oh Jae-Eung;Hwang Dong-Kun;Park Sang-Gil;Yoon Tae-Kun;Sim Hyoun-Jin;Lee Jung-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.728-733
    • /
    • 2006
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. In previous study, we have developed to verify identification of source for the vehicle HVAC system through multiple-dimensional spectral analysis. Also we carried out objective assessments on the vehicle HVAC noises and subjective assessments have been already performed with 30 subjects. In this study, the linear regression models were obtained for the subjective evaluation and the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Appropriation of regression model is necessary to $R^2$ value and F-value. And testing for regression model is necessary to independence, homoscedesticity and normality. Also we selected optimum layout of damping material using Taguchi method. As a result of application, sound quality is improved more quietly, powerfully, even though costly, and smoothly.

HVAC & Refrigeration System for Work Barge Vessel (WORK BARGE 선의 냉동.공조 SYSTEM)

  • Nam, Im-Woo;Jung, Jae-Chun;Kim, Bong-Je
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.583-590
    • /
    • 2008
  • 최근 작업자 숙소 및 이송용 외에 작업용으로 사용 가능한 Barge선의 일종인 Accommodation Work Barge 선의 건조량이 증가 추세인 바 현재 중국에서 건조 중인 해당 선박의 HVAC & Refrigeration system에 대하여 정리하였다. 본 시스템은 R404A Direct expansion 냉각방식 (직접팽창방식)이 적용되었으며 HVAC system 중 Air conditioning 부분에 대해서는 선박의 각 Deck 기준으로 Zoning 하여 개별적인 Air handling unit와 Condensing unit를 구성하였으며 (각 unit의 용량은 필요용량의 100%), 냉동 창고의 Refrigeration system은 해당 격실 (육고, 어고, 야채고)에 각각 Unit cooler를 설치하고, Condensing unit를 기계실에 설치하였다. 장비는 전체 용량 100%에 대하여 항시 운전하는 100% 용량의 장비와 비상시에 운전하는 100% 용량의 예비 장비로 구성된다. 냉동 창고에 인접한 Dry provision store는 냉동 창고와는 별개로 중앙 공조기로부터의 냉각 공기를 이용하여 Spot cooling하였다. 본 System의 구성에 대한 장점 및 단점은 아래와 같다. 1. Air conditioning system이 각 Zone에 대하여 구성되므로 각 Zone에 대하여 제어가 가능하다. 2. Air con. 실에 Air handling unit와 Condensing unit가 설치되므로 냉매 배관의 길이가 짧다. 3. Air con. 실에 Air handling unit와 Condensing unit가 설치되므로 실내의 Maintenance space 상에 여유가 없다.

  • PDF

FLOW AND TEMPERATURE ANALYSIS WITHIN AUTOMOBILE CABIN BY DISCHARGED HOT AIR FROM DEFROST NOZZLE

  • Park, W.G.;Park, M.S.;Jang, K.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.139-143
    • /
    • 2006
  • As an automobile tends to be high grade, the needs for more luxurious interior and comfortable HVAC system are emerged. The defrosting ability is another major factor of the performances of HVAC system. The present work is to simulate the flow and the temperature field of cabin interior during the defrost mode. The three-dimensional incompressible Navier-Stokes equations and energy equation were solved on the multi blocked grid system by the iterative time marching method and AF scheme, respectively. The present computations were validated by the comparison of the temperature field of a driven cavity and velocity field of 1/5 model scale of an automobile. Generally good agreements were obtained. By the present computation, the complicated features of flow and temperature within the automotive cabin interior could be well understood.