• Title/Summary/Keyword: HU(Hounsfield unit)

Search Result 91, Processing Time 0.027 seconds

CT characteristics of normal canine pulmonary arteries and evaluation of optimal contrast delivery methods in CT pulmonary angiography

  • Jung, Joohyun;Chang, Jinhwa;Yoon, Junghee;Choi, Mincheol
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.247-254
    • /
    • 2007
  • This study was performed to identify the normal anatomic orientation of pulmonary arteries and to obtain the normal baseline parameters and the optimal contrast material delivery methods of computed tomographic pulmonary angiography (CTPA) on normal beagle dogs. Based on the contrast injection flow rate, the contrast volume, and the administration methods, the experimental groups were divided into 4 groups such as group 1 : 2 ml/s, 3 ml/kg, and monophasic administration; group 2 : 5 ml/s, 3 ml/kg, and monophasic administration; group 3 : 5 ml/s, 4 ml/kg, and monophasic administration; group 4 : 5 ml/s and 2 ml/kg in first phase, 0.3 ml/s and 2 ml/kg in second phase, as biphasic administration. Normal anatomic orientation of pulmonary arteries in CTPA was evaluated through reformatted and 3D images after retro-reconstruction. Normal parameters for great arteries and peripheral pulmonary arteries were obtained on the factor of basement hounsfield unit (HU) values, contrast enhanced HU values, delay time, and peak time. And the optimal contrast delivery methods were evaluated on the factor of contrast enhanced HU values, image quality, and artifact. The monophasic administration with 5 ml/s contrast injection flow rate and 3 ml/kg contrast volume was optimal in canine CTPA.

The Effect of Advanced Modeling Iterative Reconstruction(ADMIRE) on the Quality of CT Images : Non-contrast CT in Chest (고급 모델링 반복 재구성법(ADMIRE)이 CT 영상의 화질에 미 치는 영향: 흉부 비조영 CT에서)

  • Lee, SangHeon;Lee, HyoYeong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.159-168
    • /
    • 2019
  • We examined the effect of Siemens ADMIRE (Advanced Modeled Iterative Reconstruction) on image quality by measuring changes in HU, noise, and SNR of background air, fat, muscle, and background signals on a chest CT scan. Experimental results show that as the ADMIRE Strength increases, the noise decreases and the signal increases, consequently the signal-to-noise ratio increases. ADMIRE can reduce noise by 28 ~ 61% compared to FBP, which is a conventional image reconstruction algorithm, and improves SNR by 16 ~ 100%.

Study on Optimum Contrast Medium Quantity during Abdominal CT using Dual Energy Technique (복부 CT 검사 시 이중에너지 기법을 통한 적정한 조영제 양에 관한 연구)

  • Kang, Min;Choi, Namgil;Han, Jaebok;Kim, Wook;Jang, Yeongill;Song, Jongnam
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The purpose of this study is finding optimum contrast medium quantity during abdominal CT using dual energy technique. The study subjects are 30 patients who had received general single energy abdominal CT and received double energy technique follow-up abdominal CT. dual energy technique abdominal CT images were obtained after setting contrast medium quantities at 30%, 40%, 50%, 60% and 70% of contrast medium quantity at the time of single energy technique. Then the contrast enhancement (Hounsfield Unit; HU) was estimated by setting-up the regions of interest at aorta, inferior vena cava, hepatic portal vein and hepatic parenchymal. The obtained values were compared to the values of the same parts measured during single energy technique abdominal CT. The results of the study were as following. The 60% set up group had HU in aorta : $210.80{\pm}13.609$, IVC : $190.40{\pm}25.215$, hepatic portal vein : $198.40{\pm}21.232$ and hepatic parenchymal : $119.20{\pm}7.98$, The single energy abdomianl CT images had HU in aorta : $205.40{\pm}16.426$, IVC : $188.20{\pm}21.476$, hepatic portal vein : $195.40{\pm}22.744$ and hepatic parenchymal : $121.00{\pm}6.595$. Therefore, it is possible to obtain contrast enhancement by dual energy technique abdominal CT similar to the same by single energy technique abdominal CT by setting-up the quantity of contrast medium at 60% of contrast medium at the time of single energy technique abdominal CT. Based on the result of this study, it is possible to decrease existing quantity of contrast medium by _% and the injection velocity can be also decreased. Accordingly, it is believed that the result of study would be quite useful for patients who have renal function disorder, weak vein or side effect of contrast medium in the past.

Stress Distribution following Rapid Maxillary Expansion using Different Finite Element Model according to Hounsfield Unit Value in CT Image (CT상의 HU 수치에 따른 유한요소모델을 이용한 RME 사용에 따른 응력분포에 대한 연구)

  • Yoon, Byung-Sun;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.4
    • /
    • pp.313-326
    • /
    • 2007
  • With rising prevalency of mouth breathing children caused by developing civilization and increasing pollution, there are many maxillary transverse discrepancy patients with undergrowth of maxilla. For improving this, maxillary mid-palatal suture splitting was often performed. The purpose of this study was to analyse the stress distribution on the craniofacial suture and cranium after rapid maxillary expansion by finite element model. The boy(13Y6M) was chosen for taking computed-tomography for finite element model. Three-dimensional model of maxilla, first premolar, first molar, buccal and lingual part of rapid maxillary expansion were constructed. 1. The alveolar bone adjacent to the first molar and the first premolar that was affected directly by rapid maxillary expansion was displaced laterally approximately 4.04mm at maximum. The force decreased toward anterior region and frontal alveolar bone displaced laterally about 3.18mm. 2. A forward maximum displacement was exhibited at zygomatic process middle region. 3. At maximum, maxillary median part experienced 0.973mm downward repositioning and 0.65mm upward repositioning at lateral alveolar bone. 4. Von mises stress was observed the largest stress distribution around teeth and zygomatic buttress. 5. The largest tensile force was observed around alveolar bone of teeth, while compression force was observed at zygomatic buttress.

Distinction of Internal Tissue of Raw Ginseng Root Using a Computed Tomography Scanner

  • Jung, In-Chan;Jeong, In-Soo;Kim, Cheon-Suk
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.469-476
    • /
    • 2012
  • Raw ginseng root of Panax ginseng is graded according to its shape and the quality of its internal tissue. A variety of grades are sold with prices according to grade. If an inferior raw ginseng is purchased, the consumer experience an economic loss. This research was conducted in order to explore the possibility of developing a noninvasive method for investigating raw ginseng's internal tissue. It has been determined that computed tomography (CT) scanner images agreed with actual cross-sections of raw ginseng. CT images were obtained to assess the internal portions of raw ginseng, and CT scans of raw ginseng were thoroughly measured using the Hounsfield unit (HU) system, since it allows for a more detailed analysis compared to nuclear magnetic resonance imaging. HU is a measure of attenuation used for CT images, with each pixel being assigned a value using a scale on which air is defined as -1000, water as 0 and compact bone as +1000. It takes about one second to process are slice and produce an image of the raw ginseng by a one channel CT scanner. An image good enough to discriminate the internal tissues can be obtained in 1/24 seconds with a one-channel CT scanner. Using this method, images of raw ginseng can be obtained and the characteristics of the internal tissues can be observed in a short time.

Biomedical evaluation of the vertebra based on bone density (골밀도를 고려한 척추의 생체역학적 평가)

  • Kim D.R.;Chae S.W.;Choi K.W.;Lee T.S.;Park J.Y.;Suh J.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1921-1924
    • /
    • 2005
  • In this paper, three-dimensional finite element analysis have been performed to investigate the biomechanics of vertebroplasty in patient. In order to apply various properties of the spine, the functional relation between the well-known apparent density and HU(Hounsfield unit) from CT image were employed and thus real material property can be assigned to each element of FE model. The FE analysis showed similar results with the experiments. With this approach accurate analysis of the spine and the clinical application can be expected.

  • PDF

Biomechanical Evaluation of the Vertebroplasty Based on Bone Density (골밀도를 고려한 척추성형술의 생체역학적 평가)

  • Kim Dong-Ryul;Lee Tae-Soo;Park Jung-Yul;Suh Jung-Gun;Choi Kui-Won;Chae Soo-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.185-194
    • /
    • 2006
  • In this paper, three dimensional finite element analyses have been performed to investigate the biomechanics of vertebroplasty in patient accurate FE models have been constructed from CT images of a PMMA injected vertebra. In order to apply various material properties of the spine(T12), the functional relation between the well known apparent density and HU(Hounsfield unit) from CT image were employed and thus real material properties can be assigned to each element of FE model. The FE analysis showed similar results with the experiments. With this approach accurate analysis of the vertebroplasty and its clinical applications can be expected.

Analysis of the Effect of Entry-Level 3D Printer Materials on CT Images (보급형 3D프린터 재료가 CT 영상에 미치는 영향 분석)

  • Se-Hwan, Park;Hyun-Jung, Jo;Sung-Jun, Lee;Song-Bin, Lee;Sang-Hyub, Park;Dae-Yeon, Ryu;Yeong-Cheol, Heo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.673-680
    • /
    • 2022
  • In this study, based on PLA, we analyzed the Hounsfield Unit (HU) of materials containing 20% each of aluminum, wood, copper, carbon, and marble, and tried to analyze how they affect the image. A cylindrical phantom of 5×30×30 ㎣ (thickness×diameter×height) was fabricated using a entry-level 3D printer. The kV was changed to 80, 100 and 120, and the mAs was changed to 100 and 200 mAs, and the phantom in the center of the table was cross-scanned under a total of six conditions. A circular ROI was set using image J program and the quantification value of the material part HU and the quantification value of the peripheral part CNR were obtained. The HU average of the material part increased in the order of [PLA - wood 20%], [PLA - marble 20%], [PLA - carbon 20%], [PLA 100%], [PLA - aluminum 20%], [PLA - copper 20%] (p<0.05) a negative correlation was confirmed with the HU by increasing kV. It was confirmed that the CNR value in the peripheral area increased in the order of [PLA - marble 20%], [PLA - copper 20%], [PLA - carbon 20%], [PLA - wood 20%], [PLA - aluminum 20%], and [PLA - 100%] (p<0.05). Human organs with similar HU values for each material are [PLA - copper 20%] compact bone, [PLA - aluminum 20%] cancellous bone, [PLA 100%] coagulated blood, [PLA - carbon 20%] and [PLA - marble 20%] liver, muscle, spleen and [PLA - wood 20%] had similar values to fat. In addition, we confirmed the blur phenomenon that blurs the image around the filament with all materials, and confirmed that [PLA 100%] especially has the most blur around the filament. Therefore, it is considered desirable to reflect the HU value of the target organ and consider cloudiness around the phantom when selecting materials for medical phantom fabrication, and this research can provide basic data.

The study of bone density assessment on dental implant sites (임플란트 식립 부위의 골밀도 평가에 관한 연구)

  • Park, Su-Won;Jang, Soo-Mi;Choi, Byoung-Hwan;Son, Han-Na;Park, Bong-Chan;Kim, Chang-Hwan;Son, Jang-Ho;Sung, Iel-Yong;Lee, Ji-Ho; Cho, Yeong-Cheol
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.5
    • /
    • pp.417-422
    • /
    • 2010
  • Introduction: Bone density is one of the important factors for the long term success of endosseous implants. The bone density varies from site to site and from patient to patient. A preoperative evaluation of the bone density is quite useful to oral surgeons for planning dental implantation. More accurate information on the bone density will help surgeons identify suitable implant sites, thereby increase the success rate of dental implantation. This study examined the correlation between the bone density measured preoperatively by computed tomography (CT) and the implant primary stability measured by resonance frequency analysis. Furthermore, the effects of the implant sites, gender, age and generalized systemic disorder patients on the bone density and primary implant stability were examined. Materials and Methods: One hundred and fourteen patients were selected. None of the patients had undergone a tooth extraction or bone graft history in the previous year. Preoperatively, the patients underwent CT scanning to evaluate the Hounsfield unit (HU), and resonance frequency analysis (RFA) was used to evaluate the implant primary stability at the time of implant installation. All implants were 4.0 mm diameter and 11.5 mm length US II. All patients were recorded and the HU and implant stability quotient (ISQ) value were evaluated according to the sites, gender and age. Results: The highest HU values were found in the mandibular anterior site ($827.6{\pm}151.4$), followed by the mandibular molar site ($797{\pm}135.1$), mandibular premolar site ($753.8{\pm}171.2$), maxillary anterior site ($726.3{\pm}154.4$), maxillary premolar site ($656.7{\pm}173.8$) and maxillary molar site ($621.5{\pm}164.9$). The ISQ value was the highest in the mandibular premolar site ($81.5{\pm}2.4$) followed by the mandibular molar site ($80.0{\pm}5.7$), maxillary anterior site ($77.4{\pm}4.1$), mandibular anterior site ($76.4{\pm}11.9$), maxillary premolar site ($74.2{\pm}14.3$) and maxillary molar site ($73.7{\pm}7.4$). The mean HU and ISQ value were similar in females and males. (HU: P=0.331, ISQ: P=0.595) No significant difference was also found in the age group respectively. However, the correlation coefficients between the variables showed a closed correlation between the HU and ISQ value. Conclusion: These results showed close correlation between the bone density (HU) and primary stability value (ISQ) at the time of implant installation (Correlation coefficients=0.497, P<0.01). These results strengthen the hypothesis that it might be possible to predict and quantify the initial implant stability and bone density from a presurgical CT diagnosis.

Problems of Implant Procedure and Medical Disputes (임플란트 시술의 문제점과 의료분쟁)

  • Lee, Tae-Hui;Song, Young-Ji
    • The Korean Society of Law and Medicine
    • /
    • v.17 no.1
    • /
    • pp.281-297
    • /
    • 2016
  • In order to make a treatment plan and outcome prediction, it is important to evaluate accurately and objectively osseous tissues of the implant area. The evaluation of osseous tissues is the most objective method for the decision of production time of upper structure of alveolar bone. However, the evaluation of osseous tissues contains contradiction because it is made by subjective opinions of dental surgeons. Many dentists also point out the problem of subjective evaluation of osseous tissues. Therefore, it is necessary to create accurate and objective standards. Previously, the evaluation of bone density depends on dentist's subjective sensation during drilling procedure of implant. However, the HU(Hounsfield unit) figure of CT(computed tomography) scan allows of objective and precise categorization of bone density now. Misch and Kircos divided the bone density levels from D1 to D5 with subjective separation of bone density. Their method also depended on not objective and quantification data but subjective separation by sensation. Thus, we need the evaluation of implant area through comparative analysis of more objective and quantification data. Implant treatment comprises the highest frequency of medical disputes of dental clinic. If we bring objective checkup and reasonable treatment method in the implant treatment, we can deduce more reasonable results, and the failure late of implant treatment also can decrease. The ultimate objective of this study is the minimization of dental disputes between dental patients and dentists by creating new legal standards on the basis of objective and quantification data.

  • PDF