• Title/Summary/Keyword: HTST milk

Search Result 26, Processing Time 0.023 seconds

Chemical and Microbiological Quality, Capillary Electrophoresis Pattern, and Rennet Coagulation of UHT-treated and Irradiated Milk

  • Ham, Jun-Sang;Shin, Ji-Hye;Noh, Young-Bae;Jeong, Seok-Geun;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Wan-Kyu;Jo, Cheo-Run
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.58-65
    • /
    • 2008
  • To see the possibility of irradiation as an alternative to ultra high temperature (UHT) sterilization, the quality characteristics of milk were analyzed. Milk treated by UHT ($135^{\circ}C$ for 4 sec) and irradiation at higher than 3 kGy showed no viable counts after 7 days of storage at $4^{\circ}C$. The contents of certain amino acids of milk, such as Arg, Asp, Glu, Ile, Leu, Lys, Pro, Ser, Thr, and Tyr, were lower in irradiated groups at 10 kGy than in UHT-treated one, but no difference was observed between irradiated milks at less than 5 kGy and UHT. The capillary electrophoresis (CE) patterns of the milk irradiated at 10 kGy showed a similar trend to the raw milk, low temperature long time (LTLT, $63^{\circ}C$ for 30 min), and high temperature short time (HTST, $72^{\circ}C$ for 15 sec) treated. However, the CE pattern of UHT-treated milk was different. Rennet coagulation test agreed with the CE results, showing that all milk samples were coagulated by rennet addition except for UHT-treated milk after 1 hr. These results suggest that irradiation of milk reduce the content of individual amino acids but it may not induce severe conformational change at a protein level when compared with UHT treatment.

Effects of Heat Treatment on the Nutritional Quality of Milk. IV. Effects of Heat Treatment on the Physical and Nutritional Properties of Milk Protein (우유의 열처리가 우유품질과 영양가에 미치는 영향: IV. 우유의 열처리가 우유단백질의 이화학적 성질과 영양에 미치는 영향)

  • Jung, Jong-Wook;Jung, Jiyoon;Mim, Tae Sun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.270-285
    • /
    • 2017
  • Among milk proteins, caseins are not subjected to chemical changes during heat treatment of milk; however, whey proteins are partially denatured following heat treatment. The degree of whey protein denaturation by heat treatment is decreased in the order of high temperature short time (HTST) > low temperature long time (LTLT) > direct-ultra-high temperature (UHT) > indirect-UHT. As a result of heat treatment, several changes, including variations in milk nitrogen, interactions between beta-lactoglobulin and k-casein, variations in calcium sulfate and casein micelle size, and delay of milk coagulation by chymosin action, were observed. Lysine, an important essential amino acid found in milk, was partially inactivated during heat treatment. Therefore, the available amount of lysine decreased slightly (1~4% decrease) after heat treatment, However, the influence of heat treatment on the nutritional value of milk was negligible. Nutritional value and nitrogen balance did not differ significantly between UHT and LTLT in milk. In conclusion, our results showed that heat treatment of milk did not alter protein quality. Whey proteins denatured to a limited extent during the heat treatment process, and the nutritional value and protein quality were unaffected by heat treatment.

A Study on Changes in Antibacterial Activity of Pepsin-hydrolyzed Bovine Apo-lactoferrin at Various Method for Pasteurizations and pH Values (살균방법 및 pH 조건에 따른 Pepsin-hydrolyzed Bovine Apo-lactoferrin의 항균성 변화에 관한 연구)

  • 김종우;이조윤;금종수;유대열
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.157-163
    • /
    • 1998
  • This study was carried out to examine that pepsin-hydrolyzed bovine lactoferrin has applicabilities which are market milk and dairy products. The stability of pepsin-hydrolyzed bovine apo-lactoferrin and the change of its antibacterial character has been studied under various method for pasteurization (LTLT; 65$^{\circ}C$ / 30min., HTST ; 75$^{\circ}C$ / 15sec., UHT ; 135$^{\circ}C$ / 3sec.) and pH Values (pH 2.0, pH 4.0, pH 6.8). The ehated samples were assayed for minimal bacteriocidal concentrations (MBCs) and bacteriocidal effect against E. coli. The results obtained were summarized as follows: After fractionation of pepsin-hydrolyzed bovine lactofeerin by gel filtration. several peptide fractions were found that had strong antibacterial activity. SDS-PAGE showed that the one of these fractions with strong antibacterial activity, which had a molecular mass a range of 30∼33KDa. The MBCs for pepsin-hydrolyzed bovine lactoferrin fraction No. 2 against E. coli required to cause complete inhibition of growth varied within the range of 200∼400 $\mu\textrm{g}$/ml, depending on heat treatments and pH conditions. The peptide fraction No. 2 showed strong bacteriocidal activity against E. coli at LTLT and HTST treatments under acidic pH conditions. and was reduced activity at UHT treatment under pH 6.8 condition.

  • PDF

Contents of Nitrogen Fractions and the Degree of Whey Protein Denaturation in Market Milks (시유의 질소분획물 함량과 유청단백질 변성정도)

  • 박영희;홍윤호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.161-164
    • /
    • 1993
  • To find out the effective indicators for identification and classification of different heat treatment, the contents of nitrogen fractions and the degrees of whey protein denaturation in market milks were investigated by Kjeldahl method. The contents of nitrogen fractions per 100ml raw milk were total nitrogen (431.3mg), casein nitrogen (341.0mg) and non-casein nitrogen(90.3mg), in which non-protein nitrogen (31.6mg) and denatured whey protein nitrogen (58.8mg), while those of LTLT, HTST, UHT pasteurized and UHT sterilized showed different values. The degrees of whey protein denaturation were 26.7%(LTLT), 32.9%(HTST), 60.7%(UHT pasteurized) and 38.4%(UHT sterilized), respectively. As the higher temperature was applied for the treatment of milk, the degree of the whey protein denaturation was higher. Remarkable differences in the degree of whey protein denaturation according to the heating methods were observed.

  • PDF

Changes of Chemical, Bacteriological, and Allergenicity of Raw Milk by Gamma Irradiation (감마선 조사 처리에 의한 우유의 화학적${\cdot}$세균학적 및 항원성 변화)

  • Noh, Yeong-Bae;Kim, Seung-Il;Kim, Hyeon-Su;Jeong, Seok-Geun;Chae, Hyeon-Seok;An, Jong-Nam;Jo, Cheol-Hun;Lee, Wan-Gyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • Effects of heat and gamma irradiation on chemical, microbiological, and immunological changes of raw milk were compared. Free fatty acid content of milk showed increasing tendency according to the increase of heating temperature and irradiation dose, and showed similarity in UHT (ultra high temperature) and 5 kGy irradiation. Total bacterial counts and coliforms were not detected after treatment of LTLT (low temperature long time), HTST (high temperature short time), UHT, and irradiation from 1 to 10 kGy in the milk with initial microbial load at $10^3$ CFU/mL initially, but after 7 day storage, were not detected in UHT milk and that irradiated at 3 kGy or above. Heat treatment decreased (p<0.05) arginine, asparate, iso-leucine, lysine, and methionine content compared to raw milk while irradiation decreased (p<0.05) asparate, histidine, iso-luecine, leucine, and lysine content, which means irradiation could change primary structure of milk proteins. It was concluded that f kGy gamma irradiation treatment of raw milk could give a similar effect to UHT treatment in chemical and microbiological viewpoint, and may reduce allergenicity of raw milk.

  • PDF

Changes of Undenatured Whey Protein and Available Lysine Contents in Heat Treated Market Milks (열처리에 따른 시편우유의 불편성 유청단백질과 유호성 Lysine 함량변화)

  • 홍윤호;박영희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.546-550
    • /
    • 1991
  • Changes of pH, titratible acidity, undenatured whey protein contents and the rates of loss of available lysine in market milks were investigated to find out the effective indicators for identification and classification of different heat treatment. There showed no change of both pH and titratiable acidity among the heating methods in market milks. The contents of undenatured wheyprotein per 100ml serum were determined as 413.7mg(LTLT), 341.3mg(HTSP), 6.9mg(UHT pasteurized) and 96.6mg(UHT sterilized), respectively. Distinct differences of underatured whey protein contents accoriding to the heating method could be observed. The rates of loss of available lysine in heated milks compared to raw milk showed 1.4% (LTLT), 0.2%(HTST), 6.3%(UHT pasteurized) and 4.9%(UHT sterillized), respectively. The rates of loss of available lysine were not suitable to classify the UHT heating method.

  • PDF