• Title/Summary/Keyword: HTST milk

Search Result 26, Processing Time 0.023 seconds

Effect of Sterilizing Method on the Quality Change of Iron Fortified Market Milk during Storage (살균방법이 철분강화 우유의 저장중 품질변화에 미치는 영향)

  • 김윤지;김기성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.755-759
    • /
    • 1999
  • To evaluate the effect of sterilizing method on the quality of iron fortified market milk, HTST(high temperature, short time) or LTLT(low temperture, long time) method was adopted after addition of 100ppm ferrous sulfate, ferric citrate, ferric ammonium citrate, or ferrous lactate in market milk. Sterilized iron fortified market milk was stored at 4oC and then pH, lipid oxidation, color change, and sensory quality were observed. The range of pH change in iron fortified market milk sterilized by HTST or LTLT was 6.51~6.74. The order of pH was control>ferric ammonium citrate>ferrous lactate>ferrous sulfate>ferric citrate. Oxygen consumption of ferric ammonium citrate and ferric citrate was lower than ferrous lactate and ferrous sulfate. This trend was same in HTST and LTLT method, but generally oxygen consumption was lower in iron fortified market milk sterilized by LTLT method than by HTST. In total color change, ferrous lactate treatment was closer to control than other treatments. Also sensory characteristics of ferrous lactate treatment was showed better quality than other treatment. From these results, LTLT method was more suitable than HTST method for iron fortified market milk and ferrous lactate was comparably suitable among iron salts used in this study.

  • PDF

A Study on the Sensory Characteristics of Various Heat Treated Milks (살균 온도에 따른 시판 우유의 관능적 특성 비교 연구)

  • 박신인
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.1
    • /
    • pp.19-22
    • /
    • 1995
  • Sensory characteristics of various milk samples-low-temperature long-time(LTLT) milk, high-temperature short-time (HTST) milk and ultra-high temperature (UHT) milk-were investigated using chemical analysis and sensory evaluation. The chemical composition was not much different among the milk samples. The results of evaluation of preference for color, flavor, taste and overall desirability of the milk samples by scoring and ranking tests indicated that significant difference on the sensory quality was recognized at 0.01 percent level. UHT milk samples (especially sample F and H) had better sensory acceptability than LTLT milk HTST milk samples.

  • PDF

Quality Changes in Various Heat-treated Market Milks during Storage (열처리를 달리한 시유의 저장중 품질 변화)

  • Kwon, Soon-Ha;Ahn, Joung-Jwa;Kwak, Hae-Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.90-97
    • /
    • 1998
  • This study was carried out to investigate changes of microbiological and sensory properties in various heat-treated market milks (LTLT, HTST, and UHT milks) stored at 10$^{\circ}C$ during 15d. Titratable acidity (TA) increased with storage, while pH tended to decrease. During the initial 9d, no difference was found in TA, however, after 9d, it was slightly higher in HTST and UHT milks than that in LTLT milk. In LTLT and HTST milks, total viable cells and psychrotrophs were dramatically increased during storage, In addition coliform and pathogenic bacteria were found at 12 and 15d. In UHT milk, total viable cells were found only at 15d. In sensory evaluation, LTLT and HTST milks developed a negligible off-flavor until 9d. At 12d, it became stronger in HTST milk than that in LTLT milk. In UHT milk, off-flavor was detected at 9d and increased rapidly there-after. The degree of off-flavor was little higher in HTST and UHT milks, compared with that of LTLT milk after 9d storage. These observations indicated that LTLT and HTST milks may not be microbiologically acceptable after 5d, while off-flavor was not detectable until 9d, In comparison, UHT milk keeps a good quality in microorganism until 15d, however, it may not be accepted in sensory aspect after 9d storage.

  • PDF

Pasteurization Efficiency of a Continuous Microwave HTST (연속식 마이크로파 고온단시간 살균시스템에서 우유의 살균효과)

  • Kim, Suk-Shin;Lee, Joo-Hee;Kim, Sang-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1392-1396
    • /
    • 1999
  • This work was to apply the microwave energy to HTST pasteurization of milk in order to prevent undesirable quality changes due to the fouling and overheating on the surface of heat exchanger. A continuous tubulartype microwave pasteurization system was designed using a domestic microwave oven(800w and 2,450MHz). Raw milk was HTST pasteurized$(at\;72^{circ}C\;for\;15\;sec)$ by three methods; by heating in a stainless steel tube immersed in a hot water bath(MP0), by heating in a microwave cavity to a desired temperature and then holding in a hot water bath(MP1) and by both heating and holding in a microwave cavity(MP2). The microbial quality based on the total plate count and Psychotrophic bacterial count was in the order MP0, MP2 and MP1 ; however, the quality difference was not significant(p<0.05) when the initial microbial numbers were involved in the statistical analysis. In addition, the three samples pasteurized by different methods showed the similar microbial quality based on the coliform count and phosphatase activity. The similar microbial quality of the three samples supports the potential use of microwave energy for the pasteurization of milk and other fluid food products.

  • PDF

국내 시판우유의 보관방법별 품질변화에 관한 연구

  • Jeong, Seok-Chan;Kim, Gye-Hui;Jeong, Myeong-Eun;Kim, Seong-Il;Byeon, Seong-Geun;Lee, Deuk-Sin;Park, Seong-Won;Jo, Nam-In;Kim, Ok-Gyeong
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.23-40
    • /
    • 2002
  • This study was conducted to investigate the quality changes of the UHT(ultra-high temperature), LTLT(law temperature long time) and HTST(high temperature short time) treated milk samples by storage conditions for 6 months from August 2000 to February 2001. The UHT treated milk samples collected from 3 plants(A, B and C) were stored at l0$^{\circ}$C and room temperature(dark and light exposure) for 6 months, and the LTLT and HTST treated milk samples(D and E) were also stored for 30 days. The UHT pasteurized milk of A, B and C plant was treated at 130$^{\circ}$C for 2-3s, 133$^{\circ}$C for 2-3s and 135$^{\circ}$C for 4s, respectively. The UHT sterilized milk of A and B plant was treated at 140$^{\circ}$C for 2-3s and 145$^{\circ}$C for 3-4s, respectively. The LTLT milk of D plant was treated at 63$^{\circ}$C for 30 mins, and the HTST milk of E plant was treated at 72$^{\circ}$C for 15s. All of the raw milk samples collected from storage tank in 5 milk plants were showed less than 4.0 X 10$^5$cfu/ml in standard plate count, and normal level in acidity, specific gravity, and component of milk. Preservatives, antibiotics, sulfonamides and available chloride were not detected in both raw and heat treated milk samples obtained from 5 plants. One(10%) of 10 UHT pasteurized milk samples obtained from B plant and 2 (20%) of 10 from C were not detected in bacterial count after storage at 37$^{\circ}$C for 14 days, but all of the 10 milk samples from A were detected. No coliforms were detected in all samples tested. No bacteria were also detected in carton, polyethylene and tetra packs collected from the milk plants. A total of 300 UHT pasteurized milk samples collected from 3 plants were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 and 6 months, 11.3%(34/300) were kept normal in sensory test, and 10.7%(32/300)were negative in bacterial count. The UHT pasteurized milk from A deteriorated faster than the UHT pasteurized milk from B and C. The bacterial counts in the UHT pasteurized milk samples stored at 10$^{\circ}$C were kept less than standard limit(2 ${\times}$ 10$^4$ cfu/ml) of bacteria for 5 days, and bacterial counts in some milk samples were a slightly increased more than the standard limit as time elapsed for 6 months. When the milk samples were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C), the bacterial counts in most of the milk samples from A plant were more than the standard limit after 3 days of storage, but in the 20%${\sim}$30%(4${\sim}$6/20) of the milk samples from B and C were less than the standard limit after 6 months of storage. The bacterial counts in the LTLT and HTST pasteurized milk samples were about 4.0 ${\times}$ 10$^3$ and 1.5 ${\times}$ 101CFU/ml at the production day, respectively. The bacterial counts in the samples were rapidly increased to more than 10$^7$ CFU/ml at room temperature(12$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 days, but were kept less than 2 ${\times}$ 10$^3$ CFU/ml at refrigerator(l0$^{\circ}$C) for 7 days of storage. The sensory quality and acidity of pasteurized milk were gradually changed in proportion to bacterial counts during storage at room temperature and 10$^{\circ}$C for 30 days or 6 months. The standard limit of bacteria in whole market milk was more sensitive than those of sensory and chemical test as standards to determine the unaccepted milk. No significant correlation was found in keeping quality of the milk samples between dark and light exposure at room for 30 days or 6 months. The compositions of fat, solids not fat, protein and lactose in milk samples were not significantly changed according to the storage conditions and time for 30 days or 6 months. The UHT sterilized milk samples(A plant ; 20 samples, B plant ; 110 samples) collected from 2 plants were not changed sensory, chemical and microbiological quality by storage conditions for 6 months, but only one sample from B was detected the bacteria after 60 days of storage. The shelflife of UHT pasteurized milk in this study was a little longer than that reported by previous surveys. Although the shelflife of UHT pasteurized milk made a significant difference among three milk plants, the results indicated that some UHT pasteurized milk in polyethylene coated carton pack could be stored at room temperature for 6 months. The LTLT and HTST pasteurized milk should be sanitarily handled, kept and transported under refrigerated condition(below 7$^{\circ}$C) in order to supply wholesome milk to consumers.

  • PDF

Changes in Chemical Components of Milk during Microwave HTST Pasteurization (마이크로파 고온단시간 살균시 우유의 화학적 성분 변화)

  • Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1518-1522
    • /
    • 1999
  • This work was to determine the quality changes of milk with respect to the chemical components when HTST pasteurized by microwave energy. Raw milk was HTST pasteurized $(at\;72^{\circ}C\;for\;15\;sec)$ by three methods; by heating in a stainless steel tube immersed in a hot water bath (MP0), by heating in a microwave cavity to a desired temperature and then holding in a hot water bath (MP1) and by both heating and holding in a microwave cavity (MP2). There were no significant differences in pH and titratable acidity before and after pasteurization and among the different pasteurization methods. MP1 or MP2 showed better retention or less destruction than MP0 with respect to vitamin A, vitamin $B_1$, ascorbic acid and lysine content. The higher retention of nutrients of the MP1 or MP2 supports the possibility of using microwave energy for the pasteurization of milk and other fluid food products.

  • PDF

Quantitative Descriptive Analysis and Principal Component Analysis for Sensory Attributes of Commercial Milk Preserved at Different Temperature (보존온도를 달리한 상업적 우유제품의 묘사적 관능분석 및 PCA 분석)

  • Chung, Seo-Jin;Noh, Bong-Soo;Ju, Jong-Cheol;Lee, Min-Hyang;Park, Seung-Yong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.25-35
    • /
    • 2011
  • The objectives of this study were to evaluate the sensory characteristic quality of commercial milk brands selling in the market under the preservation at the temperature of $7^{\circ}C$ and $10^{\circ}C$ stored during the period of shelf-life. Quantitative descriptive analysis after developing of descriptive terms and cluster characterization by PCA analysis over a total of 128 LTLT, HTST, UHT and UHT-ESL milks, were conducted by 8 trained panelists. A total of fourteen attributes; three aroma attributes (grassy, milky, cultured milk aroma) and seven flavor/taste attributes (sweet, salty, sour, milk, cooked, cheesy, paper board) and one aftertaste attributes (rancid flavor) and one texture attributes (viscous), were developed as descriptive terms. Significant differences (P<0.01) in the sensory attributes; sweet, milky, cheesy etc. in UHT milk and sour, cheesy, paper board, rancid etc. in UHT-ESL milk were also found between the two different temperatures within the shelf life, but both type of pasteurized milk samples (LTLT and HTST) showed significant differences (P<0.01) in the attributes, such as cultured milk aroma, salty, sour, cheesy, rancid in LTLT milk and grassy, milky, salty in HTST milk and difference (P<0.05) in cultured milk aroma for HTST milk. Therefore, from the viewpoint of not only hygienic quality but also sensory characteristics, it is required for the better acceptance of milk consumers to amendment on the regulation in relation to the preservation standard of pasteurized milk as well as UHT milk to lower than $7^{\circ}C$.

  • PDF

Effects of Milks by various Heat Treatment on Growth and Protein and Calcium Metabolism of Rats (우유의 열처리 정도가 흰쥐가 성장, 단백질 및 칼슘 대사에 미치는 영향)

  • 이정아
    • Journal of Nutrition and Health
    • /
    • v.28 no.2
    • /
    • pp.144-151
    • /
    • 1995
  • This study investigates the supplementing effects of milks by various heat treatment on growth performance and protein and calcium metabolism of rats. For 4 weeks, raw, LTLT-HTST-and UHT-processed milks were given to rats which fed on a calcium free, semi-synthetic diet containing 5%casein. There were no significant differences among the experimental groups in weight gain, feed efficiency ratio and the serum level of total protein and calcium. Also, no significant differences were showed in protein efficiency, nitrogen balance, apparent protein digestibiltiy and the contents of weight and calcium of the left femur as well as 2 incisors. However, the biological value of protein in the UHT-milk group was significantly higher than that of the raw-milk group. The apparent calcium digestibility and calcium balance in the UHT-milk group were higher than those in the raw-, LTLT- and HTST-milk groups. The weight of left femur in all the groups supplemented with various heat-treated milks was significantly impair the nutritive value of protein and calcium in milk. Futhermore, UHT-processing may improve the bioavailability of protein and calcium in milk.

  • PDF

Pattern Recognition Analysis for Volatile Compounds of the Whole, Skim, UHT-, HTST-, and LTLT-Milk under LED Irradiations (여러 가지 LED를 처리한 전지유, 무지방 우유, LTLT, UHT, HTST 처리 우유의 휘발성분 패턴 분석)

  • Kim, Ki-Hwa;Hong, Eun-Jeung;Park, Sue-Jee;Kang, Jee-Won;Noh, Bong-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.596-602
    • /
    • 2011
  • The objective of this study was to analyze the pattern recognition of volatile compounds from different types of milk under LED (Light Emitting Dioxide) irradiation for 6 d. Yellow, red, blue, dark, and fluorescent light were produced using LED equipment. A mass spectrometry-based electronic nose and DFA (discriminant function analysis) were used to determine the change in volatiles from different types of milk under LED irradiation. As the LED exposure time was increased, DF1 of whole milk changed considerably under blue light, while that of skim milk changed significantly under red and yellow light irradiation. Among the types of milk tested, the most light-induced oxidation sample was LTLT milk under blue light. The volatile compounds that were shown to increase due to LED treatment in the electronic nose analysis, which was based on MS, were mainly acetaldehyde, propanal, pentanal, hexanal, heptanal, nonanal, 3-methyl butanal, 2-methyl propanal, 2-butanone, 2-pentanone, 2-hexanone, and 2-heptanaone and 2-nonanone.

Effects of the Heat-Treatment on the Nutritional Quality of Milk - I. Historical Development of the Heat-Treatment Technology in Milk - (우유의 열처리가 우유품질과 영양가에 미치는 영향 - I. 우유 열처리 기술의 발달사 -)

  • Jung, Anna;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • The main purpose of milk heat-treatment is to improve milk safety for consumer by destroying foodborne pathogens. Secondly, heat-treatment of milk is to increase maintaining milk quality by inactivating spoilage microorganisms and enzymes. Pasteurization is defined by the International Dairy Federation (IDF, 1986) as a process applied with the aim of avoiding public health hazards arising from pathogens associated with milk, by heat treatment which is consistent with minimal chemical, physical and organoleptic changes in the product. Milk pasteurization were adjusted to $63{\sim}65^{\circ}C$ for 30 minutes (Low temperature long time, LTLT) or $72{\sim}75^{\circ}C$ for 15 seconds (High temperature short time, HTST) to inactivate the pathogens such as Mycobacterium bovis, the organism responsible for tuberculosis. Ultra-high temperature processing (UHT) sterilizes food by heating it above $135^{\circ}C$ ($275^{\circ}F$) - the temperature required to destroy the all microorganisms and spores in milk - for few seconds. The first LTLT system (batch pasteurization) was introduced in Germany in 1895 and in the USA in 1907. Then, HTST continuous processes were developed between 1920 and 1927. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. At present, UHT is most commonly used in milk production.