• Title/Summary/Keyword: HTSC elements

Search Result 27, Processing Time 0.028 seconds

Analysis on Current Limiting and Recovery Characteristics of a SFCL Dependent on Magnetic Coupling of Shunt Reactors (션트리액터의 자기결합유무에 따른 초전도전류제한기의 전류제한 및 회복특성 분석)

  • Lim, Sung-Hun;Ahn, Jae-Min;Kim, Jin-Seok;Moon, Jong-Fil;Kim, Jae-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.277-279
    • /
    • 2008
  • The current limiting and recovery characteristics of a superconducting fault current limiter (SFCL) using shunt reactors were analyzed. Generally, the shunt reactor has a role to distribute the even voltage drop between high-Tc superconducting (HTSC) elements comprising the SFCL. However, the shunt reactors magnetically separated was not contributed to the equal voltage distribution between the HTSC elements. Through the experiments for the SFCL with both the magnetically coupled and magnetically uncoupled shunt reactors, the magnetically coupled shunt reactors were confirmed to improve the current limiting and recovery characteristics of the SFCL.

  • PDF

Current Limiting and Recovery Characteristics of Two Magnetically Coupled Type SFCL with Two Coils Connected in Parallel Using Dual Iron Cores (이중철심을 이용한 병렬연결된 자기결합형 초전도한류기의 전류제한 및 회복특성)

  • Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.717-722
    • /
    • 2016
  • In this paper, in order to support the peak current limiting function depending on the intensity of the fault current at the early stage of failure, a two magnetically coupled type superconducting fault current limiter (SFCL) is proposed, which includes high-Tc superconducting (HTSC) element 1, where the existing primary and secondary coils are connected to one iron core in parallel, and HTSC element 2, which is connected to the tertiary winding using an additional iron core. The results of the experiments in this study confirmed that the two magnetic coupling type SFCL having coil 1 and coil 2 connected in parallel using dual iron cores is capable of having only HTSC element 1 support the burden of the peak current when a failure occurs. The reason for this is that although HTSC element 1 was quenched and malfunctioned because the instantaneous factor of the initial fault current was large, the current flowing to coil 3 did not exceed the critical current, which would otherwise cause HTSC element 2 to be quenched and not function. In order to limit the peak current upon fault through the sequential HTSC elements, the design should allow it to have the same value as the low value of coil 1 while having coil 3 possess a higher self-inductance value than coil 2. In addition, a short-circuit simulation experiment was conducted to examine and validate the current limiting and recovery characteristics of the SFCL when the winding ratio between coil 1 and coil 2 was 0.25. Through the analysis of the short-circuit tests, the current limiting and recovery characteristics in the case of the additive polarity winding was confirmed to be superior to that of the subtractive polarity winding.

Fabrication of High Tc Superconducting Nano Powder Using Chemical Process (화학공정을 이용한 초전도 나노 분말 활성)

  • Lee, Sang-Heon;Kim, Chan-Jung;Jang, Kun-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.547-548
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

  • PDF

Fault Current Limiting Characteristics of Separated and Integrated Three-Phase Flux-Lock Type SFCLs

  • Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.289-293
    • /
    • 2007
  • The fault current limiting characteristics of the separated and the integrated three-phase flux-lock type superconducting fault current limiters (SFCLs) were analyzed. The three-phase flux-lock type SFCL consisted of three flux-lock reactors and three $high-T_c$ superconducting (HTSC) elements. In the integrated three-phase flux-lock type SFCL, three flux-lock reactors are connected on the same iron core. On the other hand, three flux-lock reactors of the separated three-phase flux-lock type SFCL are connected on three separated iron cores. The integrated three-phase flux-lock type SFCL showed the different fault current limiting characteristics from the separated three-phase flux-lock type SFCL that the fault phase could affect the sound phase, which resulted in quench of the HTSC element in the sound phase. Through the computer simulation applying numerical analysis for its three-phase equivalent circuit, the fault current limiting characteristics of the separated and the integrated three-phase flux-lock type SFCLs according to the ground fault types were compared.

Development of the Fabrication Technology of High Tc Superconductor for Electrical Energy Storage (전기 에너지 저장을 위한 초전도 나노 합성 기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.442-445
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Fabrication Technology of high Tc Superconductor for Electrical Equipment (전력기기 초전도 합성기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.364-366
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Analysis of Current Limiting Characteristics According to Fault Angles in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (일체화된 삼상 자속구속형 고온초전도 전류제한기의 사고각에 따른 전류제한 특성 분석)

  • Park, Chung-Ryul;Du, Ho-Ik;Yim, Seong-Woo;Hyun, Ok-Bae;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Yong-Sun;Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.255-256
    • /
    • 2006
  • In this paper, we investigated the. characteristics of fault current limiting according to fault angle in the integrated three-phase flux-lock type SFCL in fault types such as the single-line-to-ground fault, the double-line-to-ground fault and the three-line-to-ground fault. When the SFCL is operating under normal condition, the magnetic flux generated between primary and secondary coils of each single phase is canceled out perfectly, so that the impedance of the SFCL is also not generated and the power system can be operated normally without any loss, However, if a fault occurs even in any phase out of three phases, quench happened in SFCL elements and the current flowing secondary coil is restricted abruptly. Finally, the balance of magnetic flux in whole SFCL system is destroyed, and the fault currents in every phase could be limited at the same time irrespective of the fault types. As a result, the developed SFCL in this study were operated normally as expected and the purpose of the integration of 3 phase current limiting was also achieved successfully. However, the fault current limiting characteristics of the SFCL was dependant on the quench characteristics of HTSC elements in each phase, and it was expected that the improvement of the SFCL could be possible through the introduction of HTSC elements which have better critical characteristics.

  • PDF

Quench characteristic of flux-lock type HTSC FCL (자속구속형 고온초전도 전류제한기의 퀜치특성)

  • Lim, Sung-Hun;Choi, Hyo-Sang;Kang, Hyeong-Gon;Ko, Seok-Cheol;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.77-79
    • /
    • 2003
  • The quench characteristics of flux-lock type high-Tc superconducting fault current limiters(SFCL) was investigated. $YBa_2Cu_3O_{7-x}$(YBCO) thin film was used as the current limiting elements of the flux-lock type SFCL. The quench characteristics of current limiting elements consisting of the flux-lock type SFCL was more improved than that of the resistive type SFCL.

  • PDF

Simulation of Operational Characteristics in Integrated Three-Phase Flux-Lock Type SFCL (3상 일체화된 자속구속형 고온초전도 전류제한기의 동작특성 시뮬레이션)

  • Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.167-168
    • /
    • 2005
  • The operational characteristics of the integrated three-phase flux-lock type superconducting fault current limiter (SFCL) were analyzed. The suggested three-phase SFCL consisted of a three-phase flux-lock reactor and three high-Tc superconducting (HTSC) elements. The former has three windings wound on an iron core, each of which has the same turn's ratio between coil 1 and coil 2. The latter are connected in series with coil 2 of each phase. The integrated three-phase flux-lock type SFCL showed the operational characteristics that the fault phase could affect the sound phase, which resulted in quenching the HTSC element in the sound phase. Through the computer simulation applying numerical analysis for its three-phase equivalent circuit, the fault current limiting characteristics of the integrated three-phase flux-lock type SFCL according to the ground fault types were compared.

  • PDF