• 제목/요약/키워드: HTS transformer

검색결과 123건 처리시간 0.018초

Double Pancake형 고온초전도 변압기의 전기적 절연 특성 (Dielectric Insulation properties of Double Pancake coil type HTS Transformer)

  • 백승명;정종만;이정원;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.494-498
    • /
    • 2002
  • HTS transformer experimentally. High temperature superconductors can only be applied against an engineering specification that has to be determined for each particular application form the design requirements for economic viability and for operation margins in service. High temperature superconducting(HTS) power apparatus are very promising candidates for application. Especially, these advantages make superconducting transformers very promising candidates for application in electrical power engineering and locomotives. In order to realize the HTS transformer, it is necessary to establish the high voltage insulation technique in cryogenic temperature. So far, insulation research of Pancake type HTS transformer is lacking nothing but insulation research of . solenoid type transformer consisted. Therefore, the composite insulation of double pancake coil type transformer are described and ac breakdown voltage characteristics of liquid nitrogen(LN$_2$) under HTS pancake coil electrode made by Bi-2223/Ag are studied. Breakdown in LN$_2$ is dominated electrode shape and distance. The relation between surface flashover voltage is considered for FRP. This research presented basis information of electrical insulation design for double pancake coil type HTS transformer.

  • PDF

초전도 변압기 교류 손실 해석 (Analysis of AC Losses in HIS Transformer with Double Pancake Windings)

  • 김종태;김우석;김성훈;최경달;주형길;홍계원;한진호;이희균
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권1호
    • /
    • pp.17-21
    • /
    • 2005
  • AC loss is one of the important parameters in HTS (High Temperature Superconducting) AC devices. Among the HTS AC power devices, the transformer is the essential part in the electrical power system. But unfortunately, the transformer is the worst HTS device concerning AC loss because of very large magnetization loss due to high magnetic field applied to the HTS wire. We calculated the magnetization losses in HTS pancake windings for transformer according to the operating temperature. Two kinds of arrangement of HTS pancake windings were adopted for calculation of AC losses of a shell type transformer, and the analysis results were presented and discussed.

154 kV급 고온초전도 변압기의 전기절연 설계 (Electrical Insulation Design of a 154 kV Class HTS Transformer)

  • 천현권;곽동순;최재형;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.53-56
    • /
    • 2007
  • In the response to the demand for electrical energy, much effort was given to develop and commercialize high temperature superconducting (HTS) power equipment has been made around the world. Especially, a HTS transformer is one of the most promising devices. Recently, Korea Polytechnic University and Gyeongsang National University are developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects in Korea. For the development of 154 kV class HTS transformer, the cryogenic insulation technology should be established. We have been analyzed insulation composition and investigated electrical characteristics such as the breakdown of $LN_2$, barrier, kapton films, and the surface flashover of FRP in $LN_2$. Furthermore, we are going to compare with measured each value and apply the value to the most suitable insulating design of the HTS transformer.

3차 권선을 고려한 단상 33MVA 고온초전도 변압기의 개념설계 (Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding)

  • 이승욱;김우석;한송엽;황영인;최경달
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.162-166
    • /
    • 2006
  • We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  • PDF

OLTC를 고려한 33 MVA 초전도 변압기 설계 (Design of a 33 MVA HTS Transformer with OLTC)

  • 최지훈;이승욱;박명진;김우석;최경달
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.885-886
    • /
    • 2006
  • We have proposed a 100 MVA, 3 phases, 154 kV class HTS transformer which will substitute for 60 MVA conventional transformer. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding, it makes the cost of the HTS transformer high and the efficiency low. Further more we considered On Load Tap Changer (OLTC) in HTS power transformer. OLTC equipment is required for fitting to a power transformer by which the voltage ratio between the windings can be varied while the transformer is on load. We analyzed the electrical characteristics of the HTS transformer such as magnetic stress and AC loss.

  • PDF

Fabrication and Test of Multiple HTS Wire with Transposition for HTS Power Transformer

  • Kim, Woo-Seok;Park, Chan;Choi, Kyeong-Dal
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권2호
    • /
    • pp.34-37
    • /
    • 2008
  • According to the recent design of an HTS (High Temperature Superconducting) power transformer whose capacity is hundreds MVA, the rated current values of the low voltage side are generally over thousands amps. Considering the performance of the recent HTS wires, it is inevitable to use several HTS wires in parallel for large rated current. Lots of stacked HTS wires were fabricated and tested so far, and the results have showed that we have to transpose each wire in order to reduce the AC losses as well as to increase the current capacity. But many development programs about HTS transformers reveal that the transposition of the several wires during the winding process is quite difficult not only in case of the layer windings but also in case of the pancake type ones. So, we need transposed multiple HTS wire which we can handle like single wire or cable for the HTS windings of large capacity power transformer. We fabricated several kinds of samples of multiple HTS wire with transposition to apply it to the HTS windings of power transformer. The electrical characteristics such as critical currents or AC losses are analyzed by experiments in case by case. Finally we present the best design of a multiple HTS wire for power transformer.

고온초전도 변압기 및 부싱의 절연설계 (The Insulation Design of HTS Transformer and Bushing)

  • 천현권;최재형;방만식;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.12-15
    • /
    • 2010
  • Important key technologies of high-$T_c$ superconducting (HTS) transformer may include the HTS wire technology, bushing technology, cooling technology, AC loss, reduction technology, large current technology, and cryogenic temperature insulation technology. From among others, the cryogenic temperature insulation technology may be specifically a core technology for ensuring reliability for the smaller size, stability, economic efficiency, and power supply of a transformer. Therefore, the electric insulation technology of a superconducting transformer should be prerequisite. Such relevant studies are ongoing, but still, they are very insufficient for establishing the cryogenic insulation technology as of yet. Therefore, this paper simulated HTS transformer applied with continuous transposed conductor (CTC), which has been studied as a way of reducing AC loss. Also, the paper analyzed the insulation configuration of HTS transformer and bushing, and, accordingly, reviewed various characteristics of insulation breakdown out of liquid nitrogen. Thus, the paper constituted insulation database, and it is going to design the insulation of a transmission class HTS transformer and bushing.

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

Magnetic Field Analysis of 1 MVA HTS Transformer Windings

  • Park, Chan-Bae;Kim, Woo-Seok;Lee, Sang-Jin;Han, Jin-Ho;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Hahn, Song-Yop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.66-70
    • /
    • 2003
  • In a HTS transformer, the perpendicular component of magnetic flux density ($B_r$) applied to HTS tapes of pancake windings becomes larger than that of solenoid winding, thereby decreasing the critical current in the HTS tapes. This paper introduces several methods to reduce $B_r$ applied to the HTS tapes in the transformer with double pancake windings by changing winding arrangements and the relative permeability of flux diverters. We have conducted a winding design for a single-phase 1MVA 22.9kV/6.6kV HTS transformer. We observed a change of $B_r$ due to a variation of gap-length between the high voltage windings and the low voltage windings, reciprocal arrangement and an increase of the number of the high voltage pancake. We also observed a change of Br on the HTS tapes due to variation of the relative permeability of flux diverters placed between the high voltage winding and the low voltage winding. Finally, we have designed a 1MVA 22.9kV/6.6kV HTS transformer winding using suggested methods and calculated transformer parameters by the 3D finite element method.

대용량 초전도 변압기 권선용 다중선재의 특성 (Characteristics of Multiply Laminated HTS tapes for the Windings of Large Power Superconducting Transformers)

  • 김우석;이승욱;황영인;장데레사;이희균;홍계원;최경달;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1216-1218
    • /
    • 2005
  • A high temperature superconducting power transformer gets its advantages over the conventional ones when the rated capacity of the HTS transformer becomes 30 MVA or more. The standard capacity of the recent 154 kV/ 22.9 kV power transformer is 3 phase 60 MVA in Korea which means that the rated current of the secondary becomes more than 1,500 amps. Considering the current capacities of the HTS wires being developed recently, it is inevitable to use the HTS wires in parallel in order to be applied to the power transformer. But nonuniform distribution of currents and large AC losses are major problems in parallel HTS windings setting aside the difficulties of making parallel windings. To solve these problems, several kinds of multiply laminated HTS wires were fabricated and tested for the application of these multiple wire to an HTS power transformer. Test results were compared with that of each other and the best were selected for the application to an HTS power transformer.

  • PDF