• Title/Summary/Keyword: HTS magnet

Search Result 194, Processing Time 0.032 seconds

Designs for 25-kA and 40-kA Vapor-Cooled Bi2223/Copper Leads with the Bi2223 Section Operating in the Current-Sharing Mode

  • Lee, Haigun;Kim, Ho-Min;Yukikazu Iwasa;Kim, Keeman
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.222-230
    • /
    • 2003
  • This paper presents reference designs for vapor-cooled HTS/Copper leads rated at 25 kA and 40 kA and that satisfy a protection criterion. Each HTS section is cooled by the effluent helium vapor boiling from a 4.2-K bath. Each HTS section is based on a design concept in which a short portion of its warm end (77.3 K) operates in the current-sharing mode; such operation results in a considerable saving for HTS materials required in the HTS section. Two designs of "fully superconducting" vapor-cooled HTS sections, one rated at 25 kA and the other at 40 kA are also presented as comparison bases for the new HTS sections. Each warm end of HTS sections is coupled to an optimal vapor-cooled copper lead rated at the same current as that for the HTS section. The extra coolant required at 77.3 K at the coupling station, an optimal length of the copper section will be shorter than that optimized for helium-vapor cooling between 4.2 K and room temperature.mperature.

Design and Test Results of 6-kA HTS-Copper Current Leads with HTS Section Operating in the Current-Sharing Mode

  • Lee, Haigun;Kim, Ho-Min;Yukikazu Iwasa;Kim, Keeman;Paul Arakawa;Greg Laughon
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.100-108
    • /
    • 2003
  • This paper presents the design and performance results of a pair of 6-kA high-temperature superconducting (HTS)-copper current leads, in which, over a short length at the warm end (e.g.,77K) of each HTS section, comprised of paralleled Bi-2223/Ag-Au tapes, is operated in the current-sharing mode. Because of their reliance on vapor cooling, the leads are applicable only to liquid helium cooled superconducting magnets such as those used in high-energy Physics accelerators and fusion machines. The experimental measurements have demonstrated that key performance data of the new 6-kA HTS-Copper leads agree reasonably well with those expected from design.

Design of HTS Magnet with Magnetic Material (자성체를 사용하는 고온초전도 마그네트의 설계)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Jang, Hyun-Man;Sohn, Myoung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.98-101
    • /
    • 2001
  • This work presents racetrack High Temperature Superconducting (HTS) magnet with iron plates to achieve the maximum current-carrying capacity and the simple shape that can easily be wound and jointed. The shape, position and kinds of iron plates are chosen by using 3 Dimensional Finite Element Analysis (3d FEA) considering magnetic saturation of iron plates. The racetrack HTS magnet with iron plates, magnet having optimized current distribution and initial magnet are compared with each other through 3D FEA, manufacturing and testing these magnets. The measured performance of the magnet with iron plates improved by 50% on the basis of initial magnet.

  • PDF

Basic Insulation Characteristics of Conduction-Cooled HTS SMES System (전도냉각 고온초전도 SMES 시스템의 기초절연 특성)

  • Choi Jae-Hyeong;Kwang Dong-Soon;Cheon Hyeon-Gweon;Kim Sang-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.404-410
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 40[K] should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. In order to take advantage of a greater critical current density of high temperature superconducting (HTS) and considerably reduce the size and weight of the system, conduction-cooled HTS superconducting magnetic energy storage (SMES) at temperatures well below 40[K] should be investigated. This work focuses on the breakdown and flashover phenomenology of dielectrics exposed in air and/or vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summarize the insulation factors of the magnet for the conduction cooled HTS SMES. And Secondly a surface flashover as well as volume breakdown in air and/or vacuum with two kind insulators has been investigated. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature. The commercial application of many conduction-cooled HTS magnets, however, requires refrigeration at temperatures below 40[K], in order to take advantage of a greater critical current density of HTS and reduce considerably the size and weight of the system. The magnet is driven in vacuum condition. The need to reduce the size and weight of the system has led to the consideration of the vacuum as insulating media. We are studying on the insulation factors of the magnet for HTS SMES. And we experiment the spacer configure effect in the dielectric flashover characteristics. From the results, we confirm that our research established basic information in the insulation design of the magnet.

Estimation of the critical current of race-track HTS magnet considering angular dependency

  • Lee, Kyubong;Sim, Kideok;Lee, Changyoung;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.47-50
    • /
    • 2015
  • The high temperature superconducting (HTS) magnet has been developed for the high magnetic field applications such as NMR, MRI and other industrial machinery. In designing process of these HTS magnets, the accurate estimation on the critical current (Ic) is essential to predict and secure the electromagnetic performance. The critical current of 2G HTS tape has anisotropic Ic degradation characteristics with the application of magnetic field - angular dependency of critical current. It is known that the perpendicular magnetic field to the face of HTS tape makes dominant degradation on the critical current for conventional 2G HTS tape. However, recently developed 2G HTS tape has more complex characteristics due to the artificial pinning center. Therefore, the method for Ic estimation reflecting such characteristics of 2G HTS tape needs to be devised. The method considering the angular dependency is introduced in this paper. And the result of newly devised method is compared with that of previous method.

Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice

  • Baek, Geonwoo;Kim, Jinsub;Lee, Woo Seung;Song, Seunghyun;Lee, Onyou;Kang, Hyoungku;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.51-55
    • /
    • 2017
  • To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.

Design of a small size insulationless superconducting rotor (인슐레이션을 제거한 소형 초전도 회전자 디자인)

  • Kim, Kwang-Min;Jung, Sung-Jun;Kim, Gyeong-Hun;Kim, Nam-Won;Park, Min-Won;Yu, In-Keun;Park, Tae-Joon;Kim, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.792-793
    • /
    • 2011
  • The purpose of this paper is to study the thermal and mechanical characteristics of HTS (high temperature superconductor) field magnet according to the design of a small size superconducting rotor without insulation. First, basic design data of superconducting rotor were acquired through electromagnetic analysis. Based on these data, analysis regarding mechanical and thermal characteristics of HTS field magnet was executed. Anisotropic condition was considered in the mechanical characteristics of HTS field magnet. Average values of specific heat and heat conductivity up to 30 K were used during the analysis of thermal characteristics. Analysis results show superior mechanical and thermal characteristics of insulationless HTS field magnet compared with insulated HTS field magnet.

  • PDF

Critical Current Degradation Analysis in HTS Pancake Coil due to Self Field Effects

  • Nah, Wan-Soo;Joo, Jin-Ho;Yoo, Jai-Moo
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.68-72
    • /
    • 1999
  • Since the discovery of high Tc superconductors, great efforts have been focused to develop high performance HTS magnets for the ultimate applications to power system devices. Magnet designers, however, have had difficulties in the estimation of the maximum operating current of the designed magnet from the tested short sample data, due to the degradation of the critical current density in the magnet. Similar story applies to the HTS electrical bus bar. It has been found that the critical current of Bi-2223 stacked tapes is much less than the total summation of critical currents of each tape, which is mainly attributed to the self magnetic fields. Furthermore, since the critical current degradation of Bi-2223 tape is greater in the normal magnetic field (to the tape surface) than in the parallel one, detailed magnetic field configurations are required to reduce the self field effects. In this paper, we calculate the self field effects of a stacked conductor, defining self field factors of normal and parallel magnetic fields to the tape surface. Finally, the critical current degradations in the HTS magnet are explained by the introduced self field factors of the stacked conductor.

  • PDF

The design of HTS insert coil and LTS background magnet for NMR research (NMR 연구를 위한 HTS insert coil 및 LTS background magnet 설계)

  • Choi, Suk-Jin;Hwang, Young-Jin;Kim, Young-Jae;Chang, Ki-Sung;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.744_745
    • /
    • 2009
  • 고해상도의 NMR 연구 개발을 위해서는 고자장의 마그넷연구가 선행되어야 한다. 고자장을 구현하기 위해서는 저온초전도체를 이용한 마그넷뿐만이 아니라 고온초전도체를 이용한 인서트 코일의 연구가 필요하다. 연세대학교에서는 국가지정연구실사업으로 단백질 구조 규명의 초고자장 NMR 실현을 위한 고온초전도 인서트 코일 기술연구를 진행하고 있다. 본 논문에서는 고온초전도 인서트 코일 연구를 위해 제작할 LTS background magnet과 HTS 인서트 코일에 대한 전자장 해석을 진행하였다. 균일도나 선재 사양 등의 주요 변수 등을 고려하여 LTS background magnet과 HTS 인서트 코일에 적합한 사양을 결정하도록 하였다.

  • PDF