• Title/Summary/Keyword: HTS coils

Search Result 112, Processing Time 0.024 seconds

Analysis of AC losses in HTS coils by temperature variations

  • Kim, Yungil;Lee, Ji-Kwang;Lee, Seyeon;Kim, Woo-Seok;Lee, Siyoung;Choi, Kyeongdal
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.50-54
    • /
    • 2018
  • We analyzed the temperature dependency of the AC losses in high temperature superconducting (HTS) coils. In the case of a short sample of an HTS tape, the magnetization loss at 4.2 K could be higher than the one at 77 K for a same transport current. It happens when the perpendicular magnetic field is above a certain magnitude. The AC loss characteristics of solenoidal coils have been analyzed at the temperatures of 65 K and 77 K. They were categorized by the aspect ratios. The operating current of a solenoid was normally set about 70 % of the critical current. An HTS solenoid with the same operating current of 77 K causes larger AC losses at 65 K in the most cases of the HTS solenoids. We also analyzed the AC loss characteristics due to the temperature variations for three types of superconducting magnetic energy storages. Two of them were solenoidal types and the other was toroidal type. The results showed the tendency for the coils to have higher AC losses at lower temperature with the same operating currents and scenarios.

Analytic equation to energy conversion between electromagnetically coupled superconducting and copper coils

  • An, Soobin;Choi, Kibum;Bang, Jeseok;Bong, Uijong;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.36-39
    • /
    • 2019
  • This paper presents an analytic method to calculate energy conversion between electromagnetically coupled high-temperature superconducting and copper coils. The energy transfer from one coil to the other is commonly observed during quench of a no-insulation (NI) high temperature superconductor (HTS) magnet. Proper understanding of this phenomenon is particularly important to protect an NI HTS magnet, especially to avoid any potential mechanical damages. In this paper, analytic equations are obtained to estimate the energy transfer between the NI and copper coils. The well-known lumped-parameter circuit model is adopted provided that key parameters of the coils are given.

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

Test Results of a Three Phase 10㎸A HTS Transformer With Double Pan Cake Coils (3상 10kVA 더블 팬케익 코일형 고온초전도 변압기 특성시험 결과)

  • 이승욱;이희준;차귀수;이지광;최경달;류경우;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.101-106
    • /
    • 2003
  • The high temperature superconductor transformers gain interests from the industries. This paper described construction and test results of 10㎸A HTS transformer Three phase transformer with double pancake windings were constructed. To reduce the leakage magnetic field, secondary coil were placed between the two primary coils. BSCCO-2223 wire. silicon sheet steel core and FRP cryostats were used to construct the transformer. Three coils were stacked in one cryostat. Two double pancake coils were connected in series for the primary coil and one double pancake coil was used for the secondary coil. Total number of turns of the primary winding and the secondary winding were 112turns and 98urns, respectively, The rated voltages of each winding were 440/220V. The rated currents of each winding were 13.1/26.2A. After the tests of basic properties of the three phase HTS transformer using no-load test, short-circuit test and full-load test, continuous operation of 100 hours with pure resistive load has been carried out. Test results proved over-load capability and reliability of the HTS transformer.

Superconducting magnet system of in-flight separator for a heavy ion accelerator planned in Korea

  • Kim, J.W.;Kim, D.G.;Jo, H.C.;Choi, Y.S.;Kim, S.H.;Sim, K.D.;Sohn, M.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.28-31
    • /
    • 2015
  • An in-flight fragment separator, which aims to produce and study rare isotopes, consists of superferric quadrupole triplets and $30^{\circ}$ dipole magnets to focus and bend the beams for achromatic focusing and momentum dispersion, respectively. The separator is divided into pre and main stages, and we plan to use superconducting magnets employing high-Tc superconductor (HTS) coils in the pre-separator area, where radiation heating is high. The HTS coils will be cooled by cold He gas in 20-50 K, and in the other area, superferric magnets using low-temperature superconductor (LTS) will be used at 4 K. A few LTS coils were wound and successfully tested in a LHe dewar, and the design of cryostat has been optimized. Development of the HTS coils is ongoing in collaboration with a group at KERI. An HTS coil of racetrack shape was wound and tested in a $LN_2$ bath and in a dewar with cryocooler. No degradation on critical current due to coil winding was found.

Test of the Conduction Cooling System for HTS SMES (고온 초전도 SMES용 전도냉각시스템 특성시험)

  • Yeom, Han-Kil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • The characteristic of the superconducting magnetic energy storage(SMES) system is faster response, longer life time, more economical, and environment friendly than other uninterruptible power supply(UPS) using battery. So, the SMES system can be used to develop methods for improving power quality where a short interruption of power could lead to a long and costly shutdown. Recently, cryogen free SMES has developed using BSCCO(Bismuth Strontium Calcium Copper Oxide) wire. We fabricated and tested the conduction cooling system for the 600 kJ class HTS SMES. The experiment was accomplished for the simulation coils. The simulation coils were made of aluminium, it is equivalent to thermal mass of 600 kJ HTS SMES coil. The coil is cooled with two GM coolers through the copper conduction bar. In this paper, we report that the test results of cool-down and heat loads characteristics of the simulation coils. The developed conduction cooling system adapted to 600 kJ HTS SMES system and cope with the unexpected sudden heat impact, too.

Critical Characteristics Estimation of a Large-Scale HTS Wind Turbine Generator Using a Performance Evaluation System

  • Kim, Taewon;Woo, Sang-Kyun;Kim, Changhyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.229-233
    • /
    • 2019
  • Large-scale High Temperature Superconducting (HTS) wind power generators suffer from high electromagnetic force and high torque due to their high current density and low rotational speed. Therefore, the torque and Lorentz force of HTS wind power generators should be carefully investigated. In this paper, we proposed a Performance Evaluation System (PES) to physically test the structural stability of HTS coils with high torque before fabricating the generator. The PES is composed of the part of a pole-pair of the HTS generator for estimating the characteristic of the HTS coil. The 10 MW HTS generator and PES were analyzed using a 3D finite element method software. The performance of the HTS coil was evaluated by comparing the magnetic field distributions, the output power, and torque values of the 10 MW HTS generator and the PES. The magnetic flux densities, output power, and torque values of the HTS coils in the PES were the same as a pole-pair of the 10 MW HTS generator. Therefore, the PES-based evaluation method proposed in this paper can be used to estimate the critical characteristics of the HTS generator under high magnetic field and high torque before manufacturing the HTS wind turbines. These results will be used effectively to research and manufacture large-scale HTS wind turbine generators.

Quench and Recovery Characteristics of Non-Inductively Wound HTS Coils with Various Winding (권선방식에 따른 무유도 권선형 HTS 코일의 퀜치 및 회복 비교특성)

  • Jo, Hyun-Chul;Chang, Ki-Sung;Kim, Young-Jae;Choi, Suk-Jin;Hwang, Young-Jin;Kim, Won-Cheol;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • To limit fault current in a power system, superconducting fault current limiters (SFCLs) using high temperature superconducting (HTS) coils have been developed by many research groups so far. Non-inductive winding of HTS coils used for SFCLs can be classified into solenoid winding and pancake winding. Each of winding is expected to have different quench and recovery characteristics because the structure of solenoid winding differs from pancake winding's. Therefore it is important to the SFCLs application to investigate characteristics of each winding. In this paper, we deal with quench and recovery characteristics of four kinds of winding : solenoid winding, pancake winding without spacers, and with spacers of 2 and 4 mm thickness. In order to obtain quench and recovery parameters of coils, short circuit tests were performed in liquid nitrogen.

Conceptual design of cooling anchor for current lead on HTS field coils

  • Hyeon, C.J.;Kim, J.H.;Quach, H.L.;Chae, S.H.;Yoon, Y.S.;Lee, J.;Han, S.H.;Jeon, H.;Choi, Y.H.;Lee, H.G.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.38-43
    • /
    • 2017
  • The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

Contact resistance characteristics of 2G HTS coils with metal insulation

  • Sohn, M.H.;Ha, H.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.26-30
    • /
    • 2018
  • The turn-to-turn contact resistance of 2G high temperature superconducting (HTS) coils with metal insulation (MI) is closely related to the stability of the coils, current charging rate and delay time [1]. MI coils were fabricated using five kinds of metal tapes such as aluminum (Al) tape, brass tape, stainless steel (SS) tape, copper (Cu)-plated tape and one-sided Cu-plated SS tape. The turn-to-turn contact surface resistances of co-winding model coils using Al tape, brass tape, and SS tape were 342.6, 343.6 and $724.8{\mu}{\Omega}{\cdot}cm^2$, respectively. The turn-to-turn contact resistance of the model coil using the one-sided Cu-plated SS tape was $ 248.8{\mu}{\Omega}{\cdot}cm^2$, which was lower than that of Al and brass tape. Al or brass tape can be used to reduce contact resistance and improve the stability of the coil. Considering strength, SS tape is recommended. For strength and low contact resistance, SS tape with copper plating on one side can be used.