• Title/Summary/Keyword: HTS cable

Search Result 280, Processing Time 0.022 seconds

The Characteristics on Transport Current of Bi-2223 Based Prototype HTS Cable (Bi-2223계 Prototype 고온 초존도 케이블의 전류 통전 특성)

  • 김영석;이병성;곽민환;장현만;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.630-635
    • /
    • 2000
  • Superconducting power cable is one of the most promising energy application of high-T$\sub$2/ superconductor(HTS). Thus we investigated previously the electrical and mechanical characteristics on Bi-2223 Ag sheathed tape. And a prototype HTS cable have been designed constructed and tested. In case of 19-filament type transport losses agree with the results of norris theory(strip). The critical current of HTS cable(1, 19-filament) in LN$_2$was 116[A], 240[A] and degradation coefficient(k) was 0.71, 0.73 respectively. In case of 19-filament cable critical current was decreased because of mechanical strain at pitch. And AC loss of HTS cable(19-filament) was 0.7 [W/m] in 240[A] loading

  • PDF

Economic analysis of a 22.9 kV HTS power cable and conventional AC power cable for an offshore wind farm connections

  • Jung, Ga-Eun;Dinh, Minh-Chau;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.60-64
    • /
    • 2018
  • As the offshore wind farms increase, interest in the efficient power system configuration of submarine cables is increasing. Currently, transmission system of the offshore wind farm uses almost AC system. High temperature superconducting (HTS) power cable of the high capacity has long been considered as an enabling technology for power transmission. The HTS cable is a feasible way to increase the transmission capacity of electric power and to provide a substantial reduction in transmission losses and a resultant effect of low CO2 emission. The HTS cable reduces its size and laying sectional area in comparison with a conventional XLPE or OF cable. This is an advantage to reduce its construction cost. In this paper, we discuss the economic feasibility of the 22.9 kV HTS power cable and the conventional AC power cables for an offshore wind farm connections. The 22.9 kV HTS power cable cost for the offshore wind farm connections was calculated based on the capital expenditure and operating expense. The economic feasibility of the HTS power cable and the AC power cables were compared for the offshore wind farm connections. In the case of the offshore wind farm with a capacity of 100 MW and a distance of 3 km to the coast, cost of the 22.9 kV HTS power cable for the offshore wind farm connections was higher than 22.9 kV AC power cable and lower than 70 kV AC power transmission cable.

A Study on the Single Line-to-Ground Fault Analysis of HTS Power Cable (초전도 전력케이블의 1선 지락고장 특성 해석에 관한 연구)

  • Je, Hyang-Ho;Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Jo, Jeon-Wook;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.593-594
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Commercializing of HTS power cable is coming. Simulation is required for safety before install of HTS power cable, a fabrication model used at the power system simulation. In this paper, we shows a single line-to ground fault analysis in the grid system which has a loom length HTS power cable. The authors developed a single line-to ground fault current calculation method which is considering the shield layer of HTS power cable. In the calculation, the T type equivalent circuit is used to derive the mutual inductance of the HTS power cable

  • PDF

A Study on the Single Line-to-Ground Fault Analysis of HTS Power Cable (초전도 전력케이블의 1선 지락고장 특성 해석에 관한 연구)

  • Je, Hyang-Ho;Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Jo, Jeon-Wook;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2225-2226
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Commercializing of HTS power cable is coming. Simulation is required for safety before install of HTS power cable, a fabrication model used at the power system simulation. In this paper, we shows a single line-to ground fault analysis in the grid system which has a loom length HTS power cable. The authors developed a single line-to-ground fault current calculation method which is considering the shield layer of HTS power cable. In the calculation, the T type equivalent circuit is used to derive the mutual inductance of the HTS power cable.

  • PDF

Design of HTS power cable with fault current limiting function

  • Kim, Dongmin;Kim, Sungkyu;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 2020
  • As demand for electricity in urban areas increases, it is necessary to improve electric power stability by interconnecting neighboring substations and high temperature superconductor (HTS) power cables are considered as a promising option due to its large power capacity. However, the interconnection of substations reduces grid impedance and expected fault current is over 45 kA, which exceeds the capacity of a circuit breaker in Korean grid. To reduce the fault current below 45 kA, a HTS power cable having a fault current limiting (FCL) function is considered by as a feasible solution for the interconnection of substations. In this study, a FCL HTS power cable of 600 MVA/154 kV, transmission level class, is considered to reduce the fault current from 63 kA to less than 45 kA by generating an impedance over 1 Ωwhen the fault current is induced. For the thermal design of FCL HTS power cable, a parametric study is conducted to meet a required temperature limit and impedance by modifying the cable core from usual HTS power cables which are designed to bypass the fault current through cable former. The analysis results give a minimum cable length and an area of stainless steel former to suppress the temperature of cable below a design limit.

A Study on the Single Line-to-Ground Fault Analysis of HTS Power Cable (초전도 전력케이블의 1선 지락고장 특성 해석에 관한 연구)

  • Je, Hyang-Ho;Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Jo, Jeon-Wook;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1259-1260
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Commercializing of HTS power cable is coming. Simulation is required for safety before install of HTS power cable, a fabrication model used at the power system simulation. In this paper, we shows a single line-to ground fault analysis in the grid system which has a 100m length HTS power cable. The authors developed a single line-to-ground fault current calculation method which is considering the shield layer of HTS power cable. In the calculation, the T type equivalent circuit is used to derive the mutual inductance of the HTS power cable.

  • PDF

A Study on the Single Line-to-Ground Fault Analysis of HTS Power Cable (초전도 전력케이블의 1선 지락고장 특성 해석에 관한 연구)

  • Je, Hyang-Ho;Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Jo, Jeon-Wook;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1719-1720
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Commercializing of HTS power cable is coming. Simulation is required for safety before install of HTS power cable, 3 fabrication model used at the power system simulation. In this paper, we shows a single line-to ground fault analysis in the grid system which has a loom length HTS power cable. The authors developed a single line-to-ground fault current calculation method which is considering the shield layer of HTS power cable. In the calculation, the T type equivalent circuit is used to derive the mutual inductance of the HTS power cable.

  • PDF

Electrical Insulation Design of a 154 kV Class HTS Cable and Termination (154 kV급 고온초전도 케이블 및 단말의 전기절연 설계)

  • Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang -Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2007
  • A transmission class high-temperature superconducting(HTS) power cable system is being developed in Korea. For insulation design of this cable the grading method of insulating paper is proposed. Two kinds of laminated polypropylene paper that has different thickness has been used as the electrical insulation material. The use of graded insulation gives improved mechanical bending properties of the cable. In a HTS cable technology the terminations are important components. A HTS cable termination is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors. in the axial direction. There is also a temperature difference from ambient to about 77 K. For insulation design of this termination, glass fiber reinforced plastic(GFRP) was used as the insulation material of the termination body, and the capacitance-graded method is proposed. This paper will report on the experimental investigations on impulse breakdown and surface flashover characteristics of the insulation materials for insulation design of a transmission class HTS power cable and termination. Based on these experimental data, the electrical insulation design of a transmission class HTS power cable and termination was carried out.

Critical Current and AC loss Characteristics of mini-model HTS cable (고온 초전도 모델 케이블의 임계전류 및 교류손실 특성)

  • Kim, Hae-Joon;Sim, Ki-Deok;Kim, Jae-Ho;Cho, Jeon-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.809-810
    • /
    • 2006
  • Reduction of AC losses is very important for realizing HTS cable and it had been reported that the same layer current controlled by twisting pitch and direction could reduce the AC losses effectively. During the long-term development of HTS cables, the superconductor AC losses will need to be reduced to a level determined by the economics of each installation and the efficiency of the refrigeration. Theoretical models have been developed to predict the magnitude of the losses in cables composed of several layers of flat HTS tapes. This paper is manufactured mini-model HTS cable and voltage signal line to spiral shape. Mini-model HTS cable is composed of 13 HTS tape. We measured to critical current and AC loss and compared used lock-in-amp to cancel coil. This data is useful to HTS cable of DAPAS program.

  • PDF

Insulation Test for the 22.9 kV Class HTS Power Transmission Cable

  • J.W. Cho;Kim, H.J.;K.C. Seong;H.M. Jang;Kim, D.W.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.48-51
    • /
    • 2003
  • HTS power transmission cable is expected to transport large electric power with a compact size. We are developing a 3-core, 22.9 kV, 50 MVA class HTS power cable, and each core consists of a conductor and shield wound with Bi-2223 tapes, electrical insulation with laminated polypropylene paper (LPP) impregnated with liquid nitrogen. This paper describes the design and experimental results of the model cable for the 22.9 kV, 50 MVA class HTS power transmission cable. The model cable was used the SUS tapes instead of HTS tapes because of testing the electrical characteristics only. The model cable was 1.3 m long and electrical insulation thickness was 4.5 mm. The model cable was evaluated the partial discharge (PD), AC and Impulse withstand voltage in liquid nitrogen. The AC and Impulse withstands voltage and PD inception stress was satisfied with the standard of Korea Electric Power Corporation (KEPCO) in the test results. The 3-core 22.9 kV, 50 MVA class HTS power cable has been designed and manufactured based on these experimental results.