• Title/Summary/Keyword: HTS Pancake Winding

Search Result 54, Processing Time 0.03 seconds

Transportation Current Test for 1 MVA HTS Transformer (1MVA 초전도 변압기 전류 통전 시험)

  • 박정호;송희석;김우석;김성훈;이동근;최경달
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.41-44
    • /
    • 2003
  • We manufactured double pancake type windings with BSCCO wire for 1MVA HTS transformer. To verify cracks of HTS wire and performance of manufactured windings, the transportation current was measured. In this paper, we present result of the transportation current test as a DC current and compare a drop of current performance of HTS wire due to tension and rounding during the manufacturing with technical data. We obtained good results and this will be useful for another manufacturing of HTS winding

  • PDF

A Joining Method between HTS Double Pancake Coils (고온초전도 더블 팬케이크 코일들 사이의 접합 방법)

  • Sohn, Myung-Hwan;Sim, Ki-Deok;Kim, Seok-Ho;Kim, Hae-Jong;Bae, Joon-Han;Lee, Eon-Young;Min, Chi-Hyun;Seong, Ki-Chul
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.633-639
    • /
    • 2006
  • High temperature superconductor (HTS) winding coil is one of the key component in superconducting device fabrication. Double-pancake style coils are widely used for such application. High resistance between pancake coils greatly affects the machine design, operating condition and thus the stability. In order to reduce such resistance, experimentalists are looking for efficient and damage free coil connecting methods. In this respect, here we proposed parallel joining method to connect the coils. This is to do crossly joining with HTS tapes on two parallel HTS tapes. Joint samples between two parallel HTS tapes were prepared by using HTS tapes and current-voltage (I-V) characteristic curves were investigated at liquid nitrogen temperature i.e., 77.3 K. A 20 cm length joint connected between two parallel HTS tapes shows $32.5n{\Omega}$, for currents up to 250 A. A small HTS magnet, having two double pancake sub-coils connected together through new parallel joint method was fabricated and their current-voltage (I-V) characteristic curve was investigated. At 77.3K, critical current(Ic) of 97 A and resistance of $55n{\Omega}$ for currents upto 130 A were measured. At operating current 86 A lower than Ic, Joule heats generated in whole magnet and at joint region between sub-coils were 226 mW and 0.4 mW, respectively. Low Joule heat generation suggests that this joining method may be used to fabricate HTS magnet or windings.

Short-circuit Analysis of Solenoid and Pancake Type Bifilar Winding Magnets using BSCCO tape

  • Park Dong Keun;Ahn Min Cheol;Yang Seong Eun;Yoon Il Gu;Kim Young Jae;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.28-31
    • /
    • 2005
  • To verify the feasibility of bifilar winding type superconducting fault current limiter (SFCL) using BSCCO tape, two types of magnets were fabricated and tested by short-circuit in this research. Even if the FCL using high Tc superconducting (HTS) tape has zero resistance in normal state, it needs to be wound as a bifilar winding for zero inductance. Solenoid type and pancake type bifilar winding magnets are designed and fabricated with the same length of BSCCO tape. The test system consists of AC power supply, transformer, fault switch, load and bifilar winding magnet. The applied AC voltages during fault duration, 0.1s, were from 0.5V to 20V. The test results without bifilar winding magnet were compared with those with each type magnets. The test results include voltage against magnet, transport current and generated resistance curve. Thermal stability, the recovery time, was studied from the results of two type magnets. The pancake type was the most effective to limit fault current but the solenoid type was thermally the most stable. From this research, short-circuit characteristics of the two types were obtained.

Fabrication and Characteristics of Field Coils for HTS Motor (고온초전도 동기모터의 계자코일 제작과 특성)

  • Sohn, M.H.;Lee, E.Y.;Baik, S.K.;Jo, Y.S.;Kwon, W.S.;Kwon, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.735-737
    • /
    • 2003
  • A superconducting motor consisting of high temperature superconducting (HTS) rotor and air-core stator is under development in Korea Electrotechnology Research Institute. HTS motor was designed for having the rated power of 100hp at 1800 rpm. HTS field winding is composed of sixteen HTS race track shaped coils wound with stainless steel-reinforced Bi-2223 tape conductor by react and wind fabrication method. Nomex Paper was used for electrical insulation. Each of four magnet pole assemblies was constructed with four double pancake sub-coils, mechanically stacked and electrically in series. Four magnet assemblies were fixed on an aluminum support structure to make effective heat transfer. Critical current (Ic) of HTS field winding was 41A but minimum Ic of sub-coils was 35A at 77K and self field. Joule heat generated in HTS field winding was 2.11W at 77K and 35A.

  • PDF

AC Loss of the Double Pancake Winding by External Field (외부자계 인가시 더블팬케이크 권선에서 발생하는 교류손실)

  • Lee, Hee-Joon;Lee, Seung-Wook;Cha, Guee-Soo;Lee, Ji-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.99-101
    • /
    • 2001
  • Magnetization loss which is generated in HTS wire varies with the direction of the external magnetic field. This paper calculates the magnetization loss in an HTS transformer winding, where effects of the direction of magnetic field are considered. Kim model is used to consider the variation of the critical current with magnetic field and Brandt equation is used to calculate the loss by perpendicular magnetic field in transformer winding. Magnetization loss in an HTS transformer can be calculated more precisely with this paper.

  • PDF

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

Fabrication and Characteristics of HTS Field Winding of a 100 hp Synchronous Motor (100마력 동기전동기용 고온초전도 계자권선 제작과 특성)

  • Sohn Myung-Hwan;Baik Seung-Kyu;Lee Eon-Young;Kwon Young-Kil;Jo Young-Sik;Moon Tae-Sun;Kim Yeong-Chun;Kwon Woon-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.88-93
    • /
    • 2005
  • To develop a 100 hp high temperature superconducting(HTS) motor with high efficiency first in Korea, we fabricated a HTS field winding and test. HTS field winding is composed of sixteen HTS race track shaped coils wound with stainless steel-reinforced Bi-2223 tape conductor by react and wind fabrication method. Nomex paper was used for electrical insulation. Each of four magnet pole assemblies was constructed with four double pancake sub-coils, mechanically stacked and electrically in series. Four magnet assemblies were fixed on an aluminum support structure to make effective heat transfer. The Critical current (Ic) was 41.5A at 77K and self field. However the lowest Ic value of sub-coils was 35A. Joule heat generated by each joints between sub-coils was lower than 1mW at 77K and 34A. And Joule heat generated by the joints between field coils was lower than 10mW at 77K and 34A. Joule heat of the whole field winding was 1W at 77K and 32A. And so, the lowest Ic value of sub-coils was more important than Joule heats generated by all joints. The operating current must be lower than the lowest Ic of all the sub-coils. In this paper, design, construction and testing of HTS field winding, Joule heat generated by the joints, and operating current were discussed.

Design of 1 MVA Single Phase HTS Transformer with Pancake Windings Cooled by Natural Convection of Sub-cooled Liquid Nitrogen

  • Kim, Woo-Seok;Kim, Sung-Hoon;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Lee, Don-Kun;Park, Yeon-Suk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.34-37
    • /
    • 2003
  • A 1 MVA single-phase high temperature superconducting (HTS) transformer with BSCCO-2223 wire was designed in this paper. The rated voltages of each sides of the transformer are 22.9 kV and 6.6 kV respectively. Double pancake HTS windings arranged reciprocally will be used for the transformer windings, because of the advantages of insulation and distribution of surge voltage in case of a large power and high voltage transformer. Single HTS wire was used for the primary windings and four parallel wires were used for the secondary windings of the transformer with transposition. A core of the transformer was designed as a shell type core separated with the windings by a cryostat made of GFRP with a room temperature bore. The operating temperature of the HTS windings will be about 65K with sub-cooled liquid nitrogen. A cryogenic cooling system using a GM-cryocooler for this HTS transformer by natural convection of liquid nitrogen was designed. This type of cooling system can be a good option for compactness, efficiency, and reliability of the HTS transformer.

Development and Performance Test of a l00hp HTS Motor

  • Sohn, M.H.;Baik, S.K.;Lee, E.Y.;Kwon, Y.K.;Yun, M.S.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Ryu, K.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.27-31
    • /
    • 2004
  • This paper describes the development and fabrication of a high temperature superconducting motor which consists of HTS rotor and air-core stator. The machine was designed for the rated power of 100hp at 1800 rpm. The HTS field windings are composed of the double-pancake coils wound with AMSC's SUS-reinforced Bi-2223 tape conductor. These were assembled on the support structure and fixed by a bandage of glass-fiber composite. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. The rotor assembly was tested independently at the stationary state and combined with stator. Characteristic parameters such as reactances, inductances, and time constants were determined to obtain a consistent overview of the machine operation properties. This motor has met all design parameters by demonstrating HTS field winding, cryogenic refrigeration systems and an air-core armature winding cooled with air. The HTS field winding could be cooled down below 30K. No-load test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction, and basic experimental test results of the 100hp HTS machine.