• Title/Summary/Keyword: HTCs

Search Result 48, Processing Time 0.018 seconds

External Condensation Heat Transfer Coefficients of R245fa on Low Fin and Turbo-C Tubes (낮은 핀관과 Turbo-C 촉진관에서 R245fa의 외부 응축 열전달계수)

  • Shim, Yun-Bo;Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.167-175
    • /
    • 2009
  • In this study, condensation heat transfer coefficients(HTCs) of R22, R123, R134a and R245fa are measured on both 26fpi low fin and Turbo-C tubes. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling of $3{\sim}8^{\circ}C$. Test results show that HTCs of the newly developed low vapor pressure alternative refrigerant, R245fa, are $7.8{\sim}9.2%$ and $10.3{\sim}18.6%$ higher than those of R123 for 26fpi low fin tube and Turbo-C tube respectively. For all refrigerants tested, HTCs of Turbo-C enhanced tube are higher than those of 26fpi low fin tube. For the low fin tube, Beatty and Katz's prediction equation yielded 20% deviation for all fluids. The heat transfer enhancement ratio of R245fa on the Turbo-C tube is $5.9{\sim}6.4$ while that of R123 is $5.7{\sim}5.9$. From the view point of environmental safety and condensation heat transfer, R245fa is a long term candidate to replace R123 currently used in centrifugal chillers.

Boiling Heat Transfer Coefficients of Nanofluids Using Carbon Nanotubes (탄소나노튜브를 적용한 나노유체의 비등 열전달계수)

  • Lee, Yo-Han;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.35-44
    • /
    • 2009
  • In this study, boiling heat transfer coefficients(HTCs) and critical heat flux(CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nano tubes(CNTs) dispersed at $60^{\circ}C$. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For dispersion of CNTs, polyvinyl pyrrolidone(PVP) is used in distilled water. Pool boiling HTCs are taken from $10kW/m^2$ to critical heat flux for all nanofluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 200% increase at volume concentration of 0.001% CNTs as compared to that of pure water. This is related to the change of surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of heat transfer surface are decreased due to this layer. The thin layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, maintains the nucleate boiling even at very high heat fluxes and reduces the formation of large vapor canopy at near CHF resulting in a significant increase in CHF.

Pool Boiling Heat Transfer Coefficient of R245fa on the Plain Tube and the Low Fin Tube (평활관과 낮은 핀관에서 R245fa의 풀 비등 열전달계수)

  • Park, Ki-Jung;Lee, Yo-Han;Lim, Byeong-Deok;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.208-215
    • /
    • 2011
  • In this work, pool boiling heat transfer coefficients(HTCs) of R22, R123, R134a, and R245fa are measured on both horizontal plain and 26 fpi low fin tubes. The pool boiling temperature is maintained at $7^{\circ}C$ and heat flux is varied from 80 $kW/m^2$ to 10 $kW/m^2$ with an interval of 10 $kW/m^2$. Wall temperatures are measured directly by thermocouples inserted through holes of 0.5 mm diameter. Test results show that HTCs of high vapor pressure refrigerants are usually higher than those of low pressure fluids in both plain and low fin tubes. On a plain tube, HTCs of R245fa are 23.3% higher than those of R123 while on a 26 fpi low fin tube, HTCs of R245fa are 46.3% higher than those of R123. The fin effect is more prominent with low vapor pressure refrigerants than with high vapor pressure ones due to a sweeping effect.

Condensation Heat Transfer Coefficients of R245fa on a Plain Tube (수평관에서 R245fa의 응축 열전달계수)

  • Shim, Yun-Bo;Park, Ki-Jung;Jung, Dong-Soo;Kim, Jong-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.555-562
    • /
    • 2007
  • In this study, condensation heat transfer coefficients (HTCs) of R22, R134a, R245fa and R123 are measured on a horizontal plain tube. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling temperature $3-8^{\circ}C$. Test results show the HTCs of newly developed alternative low vapor pressure refrigerant, R245fa, on a plain tube are 9.5% higher than those of R123 while they are 3.3% and 5.6% lower than those of R134a and R22 respectively. Nusselt's prediction equation for a plain tube underpredicts the data by 13.7% for all refrigerants while a modified equation yielded 5.9% deviation against all data. From the view point of environmental safety and condensation heat transfer, R245fa is a long term good candidate to replace R123 used in centrifugal chillers.

Pool Boiling Heat Transfer Coefficients of R1234yf on Various Enhanced Surfaces (열전달 촉진 표면에서 R1234yf의 풀 비등 열전달계수)

  • Lee, Yohan;Kang, Dong Gyu;Seo, Hoon;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.143-149
    • /
    • 2013
  • In this work, nucleate pool boiling heat transfer coefficients (HTCs) of R134a and R1234yf are measured, on flat plain, 26 fpi low fin, Turbo-B, Turbo-C and Thermoexcel-E surfaces. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a small square copper plate ($9.53mm{\times}9.53mm$), at heat fluxes from $10kW/m^2$ to $200kW/m^2$, with an interval of $10kW/m^2$. Test results show that nucleate boiling HTCs of all enhanced surfaces are greatly improved, as compared to that of a plain surface. Nucleate pool boiling HTCs of R1234yf are very similar to those of R134a, for the five surfaces tested.

Pool Boiling Heat Transfer Coefficients of New Refrigerants on Various Enhanced Tubes (열전달 촉진관에서 신냉매의 풀비등 열전달계수)

  • 박진석;김종곤;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.710-719
    • /
    • 2001
  • Pool boiling heat transfer coefficients (HTCs) of HCFC123, HFC134a, HCFC22, HFC407C, HFC410A and HFC32 wre measured on a horizontal smooth tube, 26 fpi low fin tube, Turbo-B and Thermoexcel-E enhanced tubes. AN experimental apparatus was designed such that all tubes heated by cartridge heaters could be installed at the same time to save the refrigerant. Data were taken in the pool of $7^{\circ}C$ with the heat flux decreasing from 80 kW/$m^2\;to\;5kW/m^2$. Test results showed that HTCs of pure refrigerants and those of a azeotrope were greatly influenced by reduced pressure. HTCs of HFC407C were 21~25% lower than those of HCFC22 due to mass transfer resistance. For all refrigerants, enhanced tubes with sub-surface and sub-tunnels showed the largest heat transfer enhancement. Especially the largest heat enhancement was obtained for HCFC123 whose reduced pressure is the lowest among al the refrigerants tested. This indicates that either Turbo-B or Thermoexcel-E enhanced tube would be the best choice when used with a low vapor pressure refrigerant.

  • PDF

Flow Condensation Heat Transfer Characteristic of R245fa in a Horizontal Plain Tube (수평 평활관내 R245fa의 흐름 응축 열전달 특성)

  • Park, Hyun-Shin;Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.87-96
    • /
    • 2008
  • Flow condensation heat transfer coefficients(HTCs) of R123 and R245fa are measured in a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed saturation temperature of $50\;{\pm}\;0.2\;^{\circ}C$ with mass fluxes of 50, 100, $150\;kg/m^2s$ and heat flux of $7.3{\sim}7.7\;kW/m^2$. Heat transfer data are obtained in the vapor quality range of $10{\sim}90%$. Test results show that the flow condensation HTCs of R245fa are overall 7.9% higher than those of R123 at all mass fluxes. The pressure drop of R245fa is smaller than that of R123 at the same heat flux. In conclusion, R245fa is a good candidate to replace ozone depleting R123 currently used in chillers from the view point heat transfer and environmental properties.

Pool Boiling Heat Transfer Coefficients Upto Critical Heat flux (임계 열유속 근방까지의 풀 비등 열전달계수)

  • Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.571-580
    • /
    • 2008
  • In this work, pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of differing vapor pressure are measured on horizontal smooth square surface of 9.52 mm length. Tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from $10\;kW/m^2$ to critical heat flux of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and by thermocouples in the liquid pool. Test results show that pool boiling HTCs of refrigerants increase as the heat flux and vapor pressure increase. This typical trend is maintained even at high heat fluxes above $200\;kW/m^2$. Zuber's prediction equation for critical heat flux is quite accurate showing a maximum deviation of 21% for all refrigerants tested. For all refrigerant data up to the critical heat flux, Stephan and Abdelsalam's well known correlation underpredicted the data with an average deviation of 21.3% while Cooper's correlation overpredicted the data with an average deviation of 14.2%. On the other hand, Gorenflo's and lung et al.'s correlation showed only 5.8% and 6.4% deviations respectively in the entire nucleate boiling range.

Pool Boiling Heat Transfer Correlation for Pure Refrigerants (순수냉매의 풀비등 열전달 상관식)

  • 고영환;김종곤;송길홍;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.941-949
    • /
    • 2000
  • Pool boiling heat transfer coefficients (HTCs) of HCFC123, CFC11, HCFC142b, HFC134a, CFC12, HFC22, HFC125 and HFC32 on a horizontal smooth tube have been measured. The experimental apparatus is specially designed to simulate the real heat transfer tube with the use of the secondary fluid of water as a heat source rather than a conventional electric heat source. Data were taken in the order of decreasing heat flux starting at $80 ㎾/m^2\; and \;ending\; at\; 5㎾/m^2\;in\; the\; poo\;l temperature\; at\; 7^{\circ}C$, Test results showed that HTCs of HFC125, and HFC32 are 50~67% higher than those of HCFC22. It is also found that some of the popular pool boiling heat transfer correlations in the literature are not good to predict the HTCs of newly developed alternative refrigerants. A new correlation was developed by a regression analysis which is based upon the consistent data obtained in this study and it showed an excellent agreement with all experimental data having an absolute mean deviation of less than 10%.

  • PDF

Heat Transfer Characteristics of Spray Cooling Up to Critical Heat Flux on Thermoexcel-E Enhanced Surface (Thermoexcel-E 촉진 표면에서 임계 열유속까지의 분무 냉각 열전달 특성)

  • Lee, Yohan;Hong, Gwang-Wook;Lee, Jun-Soo;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.373-380
    • /
    • 2016
  • Spray cooling is a technology of increasing interest for electronic cooling and other high heat flux applications. In this study, heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater of $9.53{\times}9.53mm$ at $36^{\circ}C$ in a pool, a smooth flat surface and Thermoexcel-E surfaces are used to see the change in HTCs and CHFs according to the surface characteristics and FC-72 is used as the working fluid. FC-72 fluid has a significant influence on heat transfer characteristics of the spray over the cooling surface. HTCs are taken from $10kW/m^2$ to critical heat flux for all surfaces. Test results with Thermoexcel-E showed that CHFs of all enhanced surface is greatly improved. It can be said that surface form affects heat transfer coefficient and critical heat flux.