• Title/Summary/Keyword: HSV Color Space

Search Result 76, Processing Time 0.025 seconds

Implementation of a Re-coloring System on Monitor for Red-green Color Vision Deficiency (적록 색각이상자를 위한 모니터 색 보정 시스템 구현)

  • Cho, Kyung-Seon;Ko, Sung-Jea
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.165-173
    • /
    • 2015
  • People with color vision deficiency (CVD) experience difficulties in discriminating some color combinations and color differences due to the abnormal retinal cone systems. While there exist smartphones with a re-coloring function for CVD, monitors do not provide the re-coloring function. In this paper, we propose a new re-coloring algorithm that adjusts the displayed colors for CVD using a color controller embedded in the monitor. The proposed algorithm converts the hue and saturation in HSV color space, according to the type and strength of the color deficiency. The results of the performance evaluation with a certain number of people with CVD show that the proposed system can convert colors imperceptible into perceptible.

Block-based Color Image Segmentation Using HSV Color Space. (HSV 칼라를 이용한 블록단위 영상 분할)

  • 서동하;임재혁;원치선
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.651-654
    • /
    • 2000
  • 본 논문에서는 칼라 영역으로 확장된 블록단위 영상분할 알고리듬을 제안한다. 즉, 기존의 휘도 성분을 기반으로 한 블록단위 알고리듬을 HSV 칼라 성분을 기반으로 하는 칼라 영상분할로 확장한다. 기존의 수학적 형태학(mathematical morphology)에 기반한 영상분할기법이나 블록단위 영상분할 기법들이 밝기 정보만을 활용했던 것에 대해 제안된 블록단위 영상분할 기법은 밝기뿐만이 아니라 칼라 성분도 고려하여 영상분할의 정확도를 향상시켰다. 실험의 결과 휘도 성분만을 고려한 영상분할 결과 보다 칼라 성분을 사용한 영상분할의 결과가 더 정확함을 알 수 있었다.

  • PDF

Object-based Image Classification by Integrating Multiple Classes in Hue Channel Images (Hue 채널 영상의 다중 클래스 결합을 이용한 객체 기반 영상 분류)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2011-2025
    • /
    • 2021
  • In high-resolution satellite image classification, when the color values of pixels belonging to one class are different, such as buildings with various colors, it is difficult to determine the color information representing the class. In this paper, to solve the problem of determining the representative color information of a class, we propose a method to divide the color channel of HSV (Hue Saturation Value) and perform object-based classification. To this end, after transforming the input image of the RGB color space into the components of the HSV color space, the Hue component is divided into subchannels at regular intervals. The minimum distance-based image classification is performed for each hue subchannel, and the classification result is combined with the image segmentation result. As a result of applying the proposed method to KOMPSAT-3A imagery, the overall accuracy was 84.97% and the kappa coefficient was 77.56%, and the classification accuracy was improved by more than 10% compared to a commercial software.

Clustering Analysis of Object Segmentation applying Wavelet Morphology (웨이브렛 형태학 알고리즘 적용한 객체 분할의 클러스터링 분석)

  • Baek, Deok-Soo;Byun, Oh-Sung;Kang, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.39-48
    • /
    • 2006
  • This paper is proposed the wavelet morphology algorithm with the spatial auto-object segmentation concept and the clustering concept. When it is segmented the color face by using the proposed algorithm, it is made to the simple image. Also, it is used the spatial quality in order to segment and detect the image as a real time without the user's manufacturing. This removed a small part that is regarded as a noise in image by HSV color model and applied the wavelet morphology to remove a part excepting for the face image. In this paper, it is made a comparison between the wavelet morphology algorithm and the morphology algorithm. And It is showed to accurately detect the face object parts in the image appled to HSV color space model.

An Efficient Color Edge Detection Using the Mahalanobis Distance

  • Khongkraphan, Kittiya
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.589-601
    • /
    • 2014
  • The performance of edge detection often relies on its ability to correctly determine the dissimilarities of connected pixels. For grayscale images, the dissimilarity of two pixels is estimated by a scalar difference of their intensities and for color images, this is done by using the vector difference (color distance) of the three-color components. The Euclidean distance in the RGB color space typically measures a color distance. However, the RGB space is not suitable for edge detection since its color components do not coincide with the information human perception uses to separate objects from backgrounds. In this paper, we propose a novel method for color edge detection by taking advantage of the HSV color space and the Mahalanobis distance. The HSV space models colors in a manner similar to human perception. The Mahalanobis distance independently considers the hue, saturation, and lightness and gives them different degrees of contribution for the measurement of color distances. Therefore, our method is robust against the change of lightness as compared to previous approaches. Furthermore, we will introduce a noise-resistant technique for determining image gradients. Various experiments on simulated and real-world images show that our approach outperforms several existing methods, especially when the images vary in lightness or are corrupted by noise.

Detection Method of Human Face, Facial Components and Rotation Angle Using Color Value and Partial Template (컬러정보와 부분 템플릿을 이용한 얼굴영역, 요소 및 회전각 검출)

  • Lee, Mi-Ae;Park, Ki-Soo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.465-472
    • /
    • 2003
  • For an effective pre-treatment process of a face input image, it is necessary to detect each of face components, calculate the face area, and estimate the rotary angle of the face. A proposed method of this study can estimate an robust result under such renditions as some different levels of illumination, variable fate sizes, fate rotation angels, and background color similar to skin color of the face. The first step of the proposed method detects the estimated face area that can be calculated by both adapted skin color Information of the band-wide HSV color coordinate converted from RGB coordinate, and skin color Information using histogram. Using the results of the former processes, we can detect a lip area within an estimated face area. After estimating a rotary angle slope of the lip area along the X axis, the method determines the face shape based on face information. After detecting eyes in face area by matching a partial template which is made with both eyes, we can estimate Y axis rotary angle by calculating the eye´s locations in three dimensional space in the reference of the face area. As a result of the experiment on various face images, the effectuality of proposed algorithm was verified.

A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection (얼굴 검출을 위한 피부색 추출 과정에서 피부색 손실 영역 개선에 관한 연구)

  • Kim, Dong In;Lee, Gang Seong;Han, Kun Hee;Lee, Sang Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.

Development of an Augmented Reality Puzzle Game Detecting Hand Posture Using HSV Color Space in Real Time (HSV 컬러 영역을 이용한 실시간 손동작 검출 증강현실 퍼즐 게임 개발)

  • Kim, Minhyuk;Kim, Youngsik
    • Journal of Korea Game Society
    • /
    • v.14 no.5
    • /
    • pp.79-86
    • /
    • 2014
  • There have been many trials for development of games using augmented reality. This paper presents a 2D puzzle game system using HSV color space to detect hand posture from an input image by smart device's cameras in real time. The developed game in this paper brings smart devices and the computer vision closer. Also this game can be a new interactive technology utilizing both the mobility of smart devices and the tangible interactivity of virtual reality in education and entertainment environments.

Content-Based Image Retrieval Using Combined Color and Texture Features Extracted by Multi-resolution Multi-direction Filtering

  • Bu, Hee-Hyung;Kim, Nam-Chul;Moon, Chae-Joo;Kim, Jong-Hwa
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.464-475
    • /
    • 2017
  • In this paper, we present a new texture image retrieval method which combines color and texture features extracted from images by a set of multi-resolution multi-direction (MRMD) filters. The MRMD filter set chosen is simple and can be separable to low and high frequency information, and provides efficient multi-resolution and multi-direction analysis. The color space used is HSV color space separable to hue, saturation, and value components, which are easily analyzed as showing characteristics similar to the human visual system. This experiment is conducted by comparing precision vs. recall of retrieval and feature vector dimensions. Images for experiments include Corel DB and VisTex DB; Corel_MR DB and VisTex_MR DB, which are transformed from the aforementioned two DBs to have multi-resolution images; and Corel_MD DB and VisTex_MD DB, transformed from the two DBs to have multi-direction images. According to the experimental results, the proposed method improves upon the existing methods in aspects of precision and recall of retrieval, and also reduces feature vector dimensions.

Adaptive Color Shifter for RGB Channel Unbalance in Organic Light Emitting Diode Display (OLED Display의 RGB 채널간 불균형 보정을 위한 Adaptive Color Shifter)

  • Cho, Ho-Sang;Jang, Kyoung-Hoon;Kim, Chang-Hun;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1653-1662
    • /
    • 2012
  • Recently, Organic Light Emitting Diode (OLED) that is broadly applied as next generation display has various advantages. However, OLED display causes unbalanced color tone due to the difference of luminance efficiency among luminous elements. In this paper, we propose adaptive color shifter (ACS) to resolve the RGB channel unbalance and to have wide color range of a relatively weak channel using the image processing method. proposed ACS system was simulated using a variety of image. Also, we numerically analyzed using hue histogram, CIE-1931 xyz color space.