• 제목/요약/키워드: HSPF Model

검색결과 138건 처리시간 0.026초

오염총량관리지역내 소하천에 대한 BASINS 4.0 및 WinHSPF의 적용과 유전알고리즘을 이용한 매개변수의 보정 (Application of BASIN 4.0 and WinHSPF to a Small Stream in Total Water Pollution Load Management Area and Calibration of Model Parameter using Genetic Algorithm)

  • 조재현;윤승진
    • 환경영향평가
    • /
    • 제21권1호
    • /
    • pp.161-169
    • /
    • 2012
  • Recently various attempts have been made to apply HSPF model to calculate runoff and diffuse pollution loads of stream and reservoir watersheds. Because the role of standard flow is very important in the water quality modelling of Total Water Pollution Load Management, HSPF was used as a means of estimating standard flow. In this study, BASINS 4.0 and WinHSPF was applied to the Gomakwoncheon watershed, genetic algorithm(GA) and influence coefficient algorithm were used to calibrate the runoff parameters of the WinHSPF. The objective function is the sum of the squares of the normalized residuals of the observed and calculated flow and it is optimized using GA. Estimates of the optimum runoff parameters are made at each iteration of the influence coefficient algorithm. The calibration results showed a relatively good correspondence between the observed and the calculated values. The standard flow(Q275) of the Gomakwoncheon watershed was estimated using the ten years of weather data.

HSPF를 이용한 임하호 유역 유사량 모의 (Simulation of Sediment Yield from Imha Watershed Using HSPF)

  • 전지홍
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.39-48
    • /
    • 2010
  • Sediment yields from Imha watershed were simulated during 1993-2008 using Hydrologic Simulation Program-Fortran (HSPF). Using observed daily stream flow for 2004-2008 and hourly suspended solid concentration for three events during 2006, HSPF was calibrated and validated at the sites of Imha and Youngyang for stream flow and Dongchun and Jangpachun for sediment yield. The calibration and validation results represented high model efficiency for simulating daily stream flow and hourly suspended solid. The determination coefficients of calibration and validation were 0.90 and 0.81 for daily stream flow, and 0.91 and 0.86 for monthly stream flow, respectively. Based on model tolerances for calibration and validation of stream flow, HSPF performance for simulating stream flow represented 'very good'. The determination coefficients of calibration and validation were 0.94-0.96 and 0.95 for hourly sediment yields, respectively. The average yearly sediment yield during 1993-2008 was 122,290 ton/year and most of sediment yield (77 % of total yield) were generated from June to August. The calibrated HSPF simulated well the movement of water and eroded soil within Imha watershed.

유역오염원 수질거동해석을 위한 GIS기반 정보시스템 개발 (Development of Information System based on GIS for Analyzing Basin-Wide Pollutant Washoff)

  • 박대희;하성룡
    • 한국지리정보학회지
    • /
    • 제9권4호
    • /
    • pp.34-44
    • /
    • 2006
  • 환경모델링 기법은 비선형 오염유출현상을 구조화하여 배출특성 규명 및 정책대안의 영향예측 도구로서 활용도가 증가하고 있다. 반면 복잡한 입력 매개변수의 구성은 모형운영에 있어 비정량적 수치의 적용가능성을 내포하고 있다. 이러한 한계성을 극복하기 위해 최근 들어 GIS와 정보기술의 연계를 통한 자료관리 및 모형 매개변수 산출을 위한 연구들이 활발히 진행 중에 있다. 이에 본 연구의 목적은 NGIS사업을 통해 축척된 지형공간 자료와 GIS의 공간분석기능을 연계하여 유역 오염유출모형인 HSPF의 운영정보 생성을 지원하는 정보시스템을 개발하는데 있다. 주 연구내용은 시스템 분석 및 설계, 기초 데이터 수집과 DB 구축, 지형 매개변수 산정을 위한 GIS-HSPF의 통합 인터페이스 구축이다. 개발된 KBASIN-HSPF는 EPA에 의해 개발된 BASIN의 유역분할, 하천망생성, 지형특성계수 산정 기능과 함께 우리나라의 지형 오염원 기상정보의 저장구조를 고려한 데이터 모델링, Thiessen망에 준한 강우자료 보정 그리고 HSPF 모형운영정보 생성 및 전환기능을 포함하고 있다. KBASIN-HSPF는 기존의 오염유출모델링을 위해 자료준비부터 정보연계, 모형운영까지 분산된 환경에서 수행되었던 것을 통합환경하에서 진행함으로써 정보의 질적보장과 정보전환의 표준화방안을 제시하는 정보분석시스템이다.

  • PDF

SWAT과 HSPF 모형을 이용한 유출특성 비교분석 (A Comparative Analysis on the Runoff Characteristics Using SWAT and HSPF Model)

  • 김학관;김상민;박승우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1147-1151
    • /
    • 2004
  • 본 연구에서는 소유역에서의 오염총량을 추정하기 위한 오염총량 추정모형인 SWAT 모형과 HSPF모형의 유출특성을 비교분석하기 위해 발안유역의 $HP\#6$ 소유역을 시험유역으로 선정하고 유역 수문모니터링을 수행하였으며, 시험유역의 도형자료를 구축하여 SWAT 모형과 HSPF 모형을 적용하였다. 유출량에 대하여 모형의 보정과 검정결과 유출량은 HSPF 모형의 모의유출량이 SWAT 모형보다 실측치에 더 유사한 값을 보였다. 통계적인 변량을 이용하여 실측치와 SWAT 모형과 HSPF 모형의 모의치를 비교하여 평가한 결과 RMSE는 각각 5.19mm/day, 6.03mm/day, RMAE는 0.48mm/day, 0.49mm/day, 결정계수$(R^2)$는 0.86, 0.84로 모의 되었다.

  • PDF

충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석 (Comparison of SWAT-K and HSPF for Hydrological Components Modeling in the Chungju Dam Watershed)

  • 김남원;신아현;김철겸
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.609-619
    • /
    • 2009
  • SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during $2000{\sim}2006$. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients($R^2$) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristic of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.

HSPF 모형을 이용한 옥동천 유역의 유달율 분석 (Pollutant Delivery Ratio of Okdong-cheon Watershed Using HSPF Model)

  • 이현지;김계웅;송정헌;이도길;이한필;강문성
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.9-20
    • /
    • 2019
  • The primary objective of this study was to analyze the delivery ratio using Hydrological Simulation Program - Fortran (HSPF) in Okdong-cheon watershed. Model parameters related to hydrology and water quality were calibrated and validated by comparing model predictions with the 8-day interval filed data collected for ten years from the Korea Ministry of Environment. The results indicated that hydrology and water quality parameters appeared to be reasonably comparable to the field data. The pollutant delivery loads of the watershed in 2015 were simulated using the HSPF model. The delivery ratios of each subwatershed were also estimated by the simple ratio calculation of pollutant discharge load and pollutant delivery load. Coefficients of the regression equation between the delivery ratio and specific discharge were also computed using the delivery ratio. Based on the results, multiple regression analysis was performed using the discharge and the physical characteristics of the subwatershed such as the area. The equation of delivery ratio derived in this study is only for the Okdong-cheon watershed, so the larger studies are needed to apply the findings to other watersheds.

HSPF 모형을 이용한 합천댐 유입량 추정 (Estimation of the Hapcheon Dam Inflow Using HSPF Model)

  • 조현경;김상민
    • 한국농공학회논문집
    • /
    • 제61권5호
    • /
    • pp.69-77
    • /
    • 2019
  • The objective of this study was to calibrate and validate the HSPF (Hydrological Simulation Program-Fortran) model for estimating the runoff of the Hapcheon dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input data for the HSPF model. Observed runoff data from 2000 to 2016 in study watershed were used for calibration and validation. Hydrologic parameters for runoff calibration were selected based on the user's manual and references, and trial and error method was used for parameter calibration. The $R^2$, RMSE (root-mean-square error), RMAE (relative mean absolute error), and NSE (Nash-Sutcliffe efficiency coefficient) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within ${\pm}4%$ error. The model performance criteria for calibration and validation showed that $R^2$ was in the rang of 0.78 to 0.83, RMSE was 2.55 to 2.76 mm/day, RMAE was 0.46 to 0.48 mm/day, and NSE was 0.81 to 0.82 for daily runoff. The amount of inflow to Hapcheon Dam was calculated from the calibrated HSPF model and the result was compared with observed inflow, which was -0.9% error. As a result of analyzing the relation between inflow and storage capacity, it was found that as the inflow increases, the storage increases, and when the inflow decreases, the storage also decreases. As a result of correlation between inflow and storage, $R^2$ of the measured inflow and storage was 0.67, and the simulated inflow and storage was 0.61.

Assessment of Non-Point Source Pollutant Loads and Priority Management Areas using an HSPF Model in Sejong City, South Korea

  • Lim, Dohun;Lee, Yoonjin
    • 한국환경과학회지
    • /
    • 제26권8호
    • /
    • pp.881-891
    • /
    • 2017
  • In this study, the discharge loads of non-point pollution sources were analyzed using a Hydrologic Simulation Program-Fortran (HSPF) model for 46 sub-watersheds in order to guide the management plan for water and streams passing through the city. The results using HSPF showed good applicability in comparison to point measurements, which were based on BOD, TP, and TN. The mean value of the BOD loads was $4.08kg/km^2$ per day, and the highest level of BOD was $17.75kg/km^2$ per day at Namri. Three potential areas of high priority for the installment of constructed wetlands were selected in order to reduce non-point pollution sources based on BOD loads and on environmental and economic conditions. The results for these scenarios indicated a maximum rate of reduction in BOD of 39.12% within the proposed constructed wetlands.

HSPF 모델을 적용한 GIS기반의 영산강 유역 수질모의 시스템 개발에 관한 연구 (A Study on the Development of GIS Based Water Quality Simulation System using HSPF in Basin of Yeong-san River)

  • 이성주;김계현;이철용;이건휘
    • 한국습지학회지
    • /
    • 제14권4호
    • /
    • pp.645-656
    • /
    • 2012
  • 지난 반세기 동안 무분별한 산업 활동으로 인하여 유역환경은 심각하게 훼손되었다. 이를 관리하기 위한 요구는 증대되고 있으나 정량적으로 유역환경을 예측하여 판단하기 위한 시스템은 부족한 실정이다. 따라서 본 연구에서는 우리나라 유역 환경을 모의하기에 가장 적합한 HSPF(Hydrological Simulation Program-Fortran) 모델을 GIS기반 시스템에 적용하여 영산강 유역에 활용가능한 수질모의 시스템 개발에 관한 연구를 수행하였다. 이를 지원하기 위하여 HSPF 모델 모의에 필요한 입력 및 결과자료와 공간분석을 위한 GIS 공간자료를 수집하였다. 또한 GIS와 수질모델의 연계방안을 비교 분석 후, Loose coupling 연계방안을 적용하여 수질모의 시스템의 주요기능을 모듈단위별로 설계하였다. 최종적으로 설계단계에서 정의된 모듈단위 기능들을 Microsoft사의 VB.NET을 개발언어로 선정하고 ESRI사의 ArcObjects 컴포넌트를 이용하여 시스템을 개발하였다. 본 연구를 통해 개발된 GIS기반 영산강 유역 수질모의 시스템은 영산강 유역환경을 정량적으로 예측할 수 있으며, 문서형식의 모의 결과를 GIS 환경에 표출함으로써 사용자의 공간적 이해도를 높였다. 향후에는 HSPF 모의 결과를 통한 시나리오 수립이 진행되어야하며, 이는 의사결정지원시스템과 연계하여 의사결정자들로 하여금 미래 영산강유역 환경에 대한 진단 및 정책 수립에 지원할 수 있을 것으로 기대된다.

BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가 (Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF)

  • 정광욱;윤춘경;장재호;김형철
    • 한국농공학회논문집
    • /
    • 제49권2호
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.