• Title/Summary/Keyword: HSI 컬러 모형

Search Result 3, Processing Time 0.018 seconds

Recognition of Car Plate using Gray Brightness Variation, HSI Information and Enhanced ART2 Algorithm (명암도 변화 및 HSI 정보와 개선된 ART2 알고리즘을 이용한 차량 번호판 인식)

  • 김광백;김영주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.379-387
    • /
    • 2001
  • We proposed an enhanced extraction method of vehicle plate, in which both the brightness variation of gray and the Hue value of HSI color model were used. For the extraction of the vehicle plate from a vehicle image, first of all, candidate regions for the vehicle plate were extracted from the image by using the property of brightness variation of the image. A real place region was determined among candidate regions by the density of pixels with the Hue value of green and white. For- extracting the feature area containing characters from the extracted vehicle plate, we used the histogram-based approach of individual characters. And we proposed and applied for the recognition of characters the enhanced ART2 algorithm which support the dynamical establishment of the vigilance threshold with the genera]iced union operator of Yager. In addition, we propose an enhanced SOSL algorithm which is integrated both enhanced ART2 and supervised learning methods. The performance evaluation was performed using 100's real vehicle images and the evaluation results demonstrated that the extraction rates of tole proposed extraction method were improved, compared with that of previous methods based un brightness variation, RGB and HSI individually . Furthermore, the recognition rates of the proposed algorithms were improved much more than that of the conventional ART2 and BP algorithms.

  • PDF

Recognition of a New Car License Plates using (HSI 정보와 신경망을 이용한 신 차량 번호판의 인식)

  • Lee, Dong-Min;Han, Ah-Reum;Yoon, Kyeong-Ho;Park, Choong-Shik;Kim, Kwang-Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.370-376
    • /
    • 2005
  • 본 논문에서는 HSI 정보와 신경망의 비지도 학습 방법인 ART2 알고리즘을 이용하여 신 차량 번호판을 인식하는 방법을 제안한다. 제안된 방법은 차량의 영상에서 번호판 영역을 추출하는 부분과 추출된 번호판 영역의 문자를 인식하는 부분으로 구성된다. 본 논문에서는 차량 번호판 영역을 추출하기 위해 HSI 컬러 모형의 Hue 정보를 이용하여 차량 번호판 영역을 추출하고 개선된 퍼지 이진화 방법을 적용하여 추출된 차량 번호판 영역으로부터 문자를 포함한 특징 영역을 이치화 한 후에 4방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드를 인식하기 위해 잡음과 훼손에 비교적 강한 ART2 알고리즘을 적용한다. 제안된 방법의 차량 번호판 추출 및 인식 성능을 평가하기 위하여 실제 비영업용 차량 번호판에 적용한 결과, 기존의 차량 번호판의 추출 방법보다 번호판 영역의 추출률이 개선되었다. 또한 ART2 알고리즘을 적용하여 신 차량 번호판을 인식하는 것이 효율적임을 확인하였다.

  • PDF

Recognition of a New Car License Plate Using HSI Information, Fuzzy Binarization and ART2 Algorithm (HSI 정보와 퍼지 이진화 및 ART2 알고리즘을 이용한 신차량 번호판의 인식)

  • Kim, Kwang-Baek;Woo, Young-Woon;Park, Choong-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1004-1012
    • /
    • 2007
  • In this paper, we proposed a new car license plate recognition method using an unsupervised ART2 algorithm with HSI color model. The proposed method consists of two main modules; extracting plate area from a vehicle image and recognizing the characters in the plate after that. To extract plate area, hue(H) component of HSI color model is used, and the sub-area containing characters is acquired using modified fuzzy binarization method. Each character is further divided by a 4-directional edge tracking algorithm. To recognize the separated characters, noise-robust ART2 algorithm is employed. When the proposed algorithm is applied to recognize license plate characters, the extraction rate is better than that of existing RGB model and the overall recognition rate is about 97.4%.