• Title/Summary/Keyword: HSDI

Search Result 48, Processing Time 0.023 seconds

Validity test of the Health Self-Determinism Index for Korean Children (아동의 건강 자기 결정 지표에 대한 타당성 조사)

  • Hong, Kyung-Ja;Lee, Eun-Ju;Shin, Hee-Sun
    • 모자간호학회지
    • /
    • v.3 no.2
    • /
    • pp.85-94
    • /
    • 1993
  • The purpose of this study was to test the construct validity and reliability of the Health Self-Determinism Index for Children (HSDI-C), an instrument designed to measure intrinsic motivation in health behavior. An convenience sample of 558,7 to 13 years old children completed the Korean version of HSDI-C. The findings were as follows : 1. Construct validity was supported through factorial isolation of four theory-consistent subscales ; Internal-external cue responsive ness, Self-determinism in health judgement, Competency in health matters, and Self-determinism in health behavior /goal. The total percent of variance explained by 4 factors was 2 percent. 2. The correlations between the four factors were ranged from -.06 to .29 indicating that factors are not redundant and each factor contributes uniquely to the total construct. 3. Cronbach alpha coefficient for internal consistency was .96 for the total, and .72, .56, .69, and .75 on the respective subscales. Test-retest reliability for the total scale was .85 at 2 weeks. 4. The Analysis of variance for the HSDI-C total scale and subscales according to grades revealed that there were significant differences in means for the total and factor one and two, indicating younger children were more extrinsically motivated.

  • PDF

The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine (3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향)

  • Choi, Wook;Park, Cheol-Woong;Kook, Sang-Hoon;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.

Prediction of Ignition Delay for HSDI Diesel Engine (고속 직분식 디젤 엔진에서의 점화지연시기 예측)

  • Lim, Jae-Man;Kim, Yong-Rae;Ohn, Hyung-Suk;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1704-1709
    • /
    • 2004
  • New reduced chemical kinetic mechanism for prediction of autoignition process of HSDI diesel engine was investigated. For precise prediction of the ignition characteristics of diesel fuel, mechanism coefficients were fitted by the experimental results of ignition delay of diesel spray in a constant volume vessel. Ignition delay of diesel engine on various operation condition was calculated based on the new reduced chemical mechanism. The calculation results agreed well with experimental data.

  • PDF

Coupled Simulation of Common Rail Fuel Injection and Combustion Characteristics in a HSDI Diesel Engine (HSDI 디젤엔진의 연료분사계와 연소현상을 연계한 수치해석)

  • Lee, Suk-Young;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, the coupled simulation of fuel injection model and three-dimensional KIVA-3V code was tried to develop an algorism for predicting the effects of varying fuel injection parameter on the characteristics of fuel injection and emissions. The numerical simulations were performed using STAR-CD code in order to calculate the intake air flow, and the combustion characteristics is examined by KIVA-3V code linked with the conditional moment closure(CMC) model to predict mean turbulent reaction rate. Parametric investigation with respect to twelve relevant injection parameters shows that appropriate modification of control chamber orifice diameter, needle valve spring constant and nozzle chamber orifice diameter can significantly reduce NOx and soot emissions. Consequently, it is needed to optimize the fuel injection system to reduce the specific emissions such as NOx and soot.

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

Effects of VGT on Part Load Performance of Diesel Engine (VGT가 디젤엔진의 부분부하 성능에 미치는 영향)

  • Choi, Kwon Sick;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.680-686
    • /
    • 2004
  • Recently, the application of variable geometry turbocharger (VGT) to the high speed direct injection (HSDI) diesel engine has gained more and more interest in automotive industry. A steady state experimental investigation has been undertaken on a 1.5L HSDI diesel engine to verify the benefits of VGT comparing to the standard engine having a waste gate turbocharger (WGT). Specifically, part load performances (e.g., fuel economy and emission) have been investigated under various vane angles of the VGT. The results show that the real exhaust gas recirculation (EGR) rate as well as the pumping loss is very important to improve break specific fuel consumption (BSFC). It was previously known that the pumping loss only is a main parameter. In addition, the trade-off relationship between BSFC and NOx according to boost pressure, and the decreasing tendency of NOx with increasing real EGR rate have been verified. 1-D numerical analysis also has been performed, and the numerical results are in good agreement with experimental results.

  • PDF

EFFECT OF INTAKE PORT GEOMETRY ON THE IN-CYLINDER FLOW CHARACTERISTICS IN A HIGH SPEED D.I. DIESEL ENGINE

  • LEE K. H.;RYU I. D.;LEE C. S.;REITZ R. D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, the HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a HSDI diesel engine with a 4-valve type cylinder head. The four kinds of cylinder head were manufactured to elucidate the effect of intake port geometry on the in-cylinder flow characteristics. The steady flow characteristics such as coefficient of flow rate $(C_{f})$, swirl ratio (Rs), and mass flow rate (m,) were measured by the steady flow test rig and the unsteady flow velocity within a cylinder was measured by PIV. In addition, the in-cylinder flow patterns were visualized by the visualization experiment and these results were compared with simulation results calculated by the commercial CFD code. The steady flow test results indicated that the mass flow rate of the cylinder head with a short distance between the two intake ports is $13\%$ more than that of the other head. However, the non-dimensional swirl ratio is decreased by approximately $15\%$. As a result of in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the position of swirl center was changed with crank angle. As the piston moves to near the TDC, the swirl center corresponded to the cylinder center and the velocity distribution became uniform. In addition, the results of the calculation are in good agreement with the experimental results.

Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

Analysis of Down Speeding Effect on Fuel Economy during NEDC (다운 스피딩이 NEDC 모드 연비에 미치는 기여도 산출에 관한 연구)

  • Shim, Beom-Joo;Park, Kyoung-Suk;Park, Jun-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.88-94
    • /
    • 2012
  • Development trend of modern HSDI diesel engine is now focusing on low fuel consumption and emission because of strong interest in global environmental protection. Two big branches of criteria for modern diesel engine development are down sizing and down speeding. Down sizing keeps engine operation condition to the direction of higher load and thus pursuing for better thermal efficiency. But this may cause degraded vehicle dynamic performance because of reduced back up torque. Down speeding keeps engine operation condition to the direction of slightly higher load and lower engine speed. Therefore reduction of back up torque can be limited within flat torque area. This study analyzed fuel economy effect of down speeding on a vehicle powered by HSDI diesel engine in aspect of engine friction work, intake and exhaust pumping work, exhaust hat loss and thermal loss of fuel leakage of fuel injection system. Contribution factor of each engine and vehicle related parameters under basic and down speeding condition were compared and work balance of down speeding during NEDC was analyzed.