• Title/Summary/Keyword: HRIT

Search Result 29, Processing Time 0.019 seconds

Development of FPGA-based Meteorological Information Data Receiver Circuit for Low-Cost Meteorological Information Receiver System for COMS (보급형 천리안 위성 기상정보 수신시스템을 위한 FPGA 기반 기상정보 데이터 수신회로 개발)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2373-2379
    • /
    • 2015
  • COMS(Communication, Ocean and Meteorological Satellite), the first Korean geostationary meteorological satellite, provides free meteorological information through HRIT/LRIT(High/Low Rate Information Transmission) service. This work presents the development of data receiver circuit that is essential to the implementation of a low-cost meteorological information receiver system. The data receiver circuit processes the data units according to the specification of physical layer and data link layer of HRIT/LRIT service. For this purpose, the circuit consists of a Viterbi decoder, a sync. word detector, a derandomizer, a Reed-Solomon decoder and so on. The circuit also supports PCI express interface to pass the information data on to the host PC. The circuit was implemented on an FPGA(field programmable gate array) and its function was verified through simulations and hardware implementation.

MEASUREMENT OF IMPLEMENTATION LOSS FOR BRIT RECEIVER

  • Park Durk-Jong;Koo In-Hoi;Yang Hyung-Mo;Ahn Sang-Il;Kim Eun-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.561-563
    • /
    • 2005
  • From the IF (Intermediated Frequency) loop-back test, BER (Bit Error Rate) degradation of processed data, HRIT (High Rate Information Transmission), is estimated by proposed measurement configuration. The specific parameters, likely data rate, FEC (Forward Error Correction), and modulation method, are based on the outcomes of SRR (System Requirements Review) which was held on 13-14 June 2005, in Toulouse. The proposed measurement procedure is that combined 70MHz modulated signal and noise is connected to the spectrum analyzer and receiver. The former measures the C/No (Carrier to Noise density ratio) and the latter estimates BER of FEC decoded data. Implementation loss can be obtained by subtracting measured BER from calculated BER which is also subtracted data rate from measured C/No. This test procedure is very simple and can be applied to assess the implementation loss of dedicated receiver for HRIT in the future.

  • PDF

PERFORMING OF SOC DATS INTERFACE TEST WITH MODEM/BB

  • Park, Durk-Jong;Hyun, Dae-Hwan;Koo, In-Hoi;Ahn, Sang-Il;Kim, Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.64-66
    • /
    • 2006
  • DATS will connect with IMPS and LHGS to perform the reception of sensor data and the transmission of user's meteorological data, LRIT and HRIT. MODEM/BB will perform the de-commutation of received sensor data as MI and GOCI raw data according to VCID before sending them to MI and GOCI IMPS, respectively. Especially, MODEM/BB in SOC needs to be connected to six clients that consist of the primary and backup IMPS of MSC, KOSC and SOC. On the other hand, LRIT and HRIT delivered from LHGS are encoded as VITERBI and modulated by MODEM/BB. Considering sensor data transmitted from COMS, the assumed format and size of CADU are described in this paper. Finally, results related to the status of received LRIT and HRIT by frame synchronizer in user station are also described.

  • PDF

LRIT DESIGN OF COMS

  • KOO In-Hoi;PARK Durk-Jong;SEO Seok-Bae;AHN Sang-Il;KIM Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.305-308
    • /
    • 2005
  • The COMS, Korea's first geostationary multipurpose satellite program will accommodate 3 kind of payloads; Ka-Band communication transponder, GOCI (Geostationary Ocean Color Imager), and MI (Meteorological Imager). MI raw data will be transferred to ground station via L-band link. The ground station will perform image data processing for raw data, generate them into the LRIT/HRIT format, the user dissemination data recommended by the CGMS. The LRIT/HRIT are disseminated via satellite to user stations. This paper shows the COMS LRIT data generation procedure based on COMS LRIT specification and its verification results using the LRIT user station.

  • PDF

ANALYSIS ON PROCESSING PERFORMANCE OF COMS LHGS

  • Bae, Hee-Jin;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.105-108
    • /
    • 2007
  • The COMS LRIT/HRIT broadcast service should satisfy the 15 minutes timeliness requirement. The timeliness requirement is an important enough to impact on the overall performance of LHGS. Therefore, the simulation for the LHGS processing was performed with the LHGS prototype in this paper. First, processing time is measured for each process (per modules) of the LHGS without I/O time. Then, the LHGS processing is performed with worst scenario and the processing time is measured. Finally, analyses for processing time and time constraint are performed.

  • PDF

DEVELOPMENT OF MTSAT DATA PROCESSING, DISTRIBUTION AND VISUALIZATION SYSTEM ON WWW

  • Nemoto, Toshihiro;Kaneko, Takayuki;Takeuchi, Wataru
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.317-320
    • /
    • 2007
  • This research focuses on a network based data distribution and visualization system of Multi-functional Tran-port SATellite (MTSAT). Institute of Industrial Science (IIS) and Institute of Earthquake Research Institute (ERI) both at University of Tokyo have been receiving, processing, archiving and distributing of MTSAT imagery with a direct receiving of High Rate Information Transmit (HRIT) since October 2006. A software package, mtsatgeo, is developed including radiometric correction, geometric correction and spatial subset, and they are available on a web-based data distribution and processing service accessed at http://webgms.iis.u-tokyo.ac.jp/.

  • PDF

COMS SOC 13M ANTENNA G/T MEASUREMENT

  • Park, Durk-Jong;Yang, Hyung-Mo;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.489-492
    • /
    • 2007
  • At COMS SOC, 13m antenna system will serve to transmit command and receive telemetry in S-Band for COMS operation. In addition, Sensor Data and LRIT/HRIT in L-Band will be received and LRIT/HRIT in S-Band will be transmitted through this antenna system. In many cases, G/T is used as barometer to estimate the receiving capability of antenna system. To estimate G/T, this paper presents two approaches, one is analysis based on the specification of antenna and RF equipment while the other is measurement by using Sun. From the results, G/T was proven as more than 20dB/K and it means that the required G/T, 19dB/K is verified successfully.

  • PDF

VERIFICATION ON THE PERFORMANCE OF COMS SOC S-BANDSSPA

  • Park, Durk-Jong;Yang, Hyung-Mo;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.482-485
    • /
    • 2007
  • The S-Band SSPA is front-end equipment to transmit both LRIT and HRIT to COMS. To provide the required EIRP, S-Band SSPA is designed to generate maximum 1kW power at its 1dB gain compression point (P1dB). Due to the operation for 24 hours per seven days, the verification on the performance of S-Band SSPA was performed thoroughly. This paper presents that major requirements such as maximum 1kW power, maximum -26dBc of IMD characteristic at 500W output and around -57dBc of coupling factor were verified through proposed test configuration.

  • PDF

Analysis on Spectrum for COMS User Data (COMS 사용자 데이터의 스팩트럼 분석)

  • Park Durk-Jong;Koo In-Hoi;Ahn Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.386-389
    • /
    • 2006
  • 본 논문에서는 2008년에 발사예정인 통신해양기상위성의 사용자 데이터의 스팩트럼에 대해 분석한 내용이 작성 되어 있다. 사용자 데이터는 통신해양기상위성에 탑재되어 있는 기상탑재체로부터 얻은 데이터에 대해 각각 radiometric과 geometric correction을 수행 후 만들어지게 된다. 사용자 데이터의 전송 형태는 전송하려는 데이터의 양과 전송시간으로부터 계산된 전송율에 따라 각각 HRIT (High Rate Information Transmission)와 LRIT (Low Rate Information Transmission)으로 나누어진다. 이들 데이터는 각각 QPSK (Quad-Phase Shift Keying), BPSK (Bi-Phase Shift Keying)로 변조된 후에 S-Band로 위성에서 수신한 후 별도의 데이터처리에 대한 과정이 없이 바로 L-Band로 송신하여 수신기를 갖춘 일반 사용자에게 영상 및 각종 기상데이터를 제공하게 된다. 본 논문에서는 이러한 사용자 데이터의 전송에 필요한 HRIT와 LRIT의 변조 및 신호 생성 그리고 현재 기본적으로 기상위성의 수신기로써 사용되는 장비를 이용하여 사용자의 처리시스템을 고려하여 구축한 후 실제 데이터수신에 대한 성능을 확인하였다. 그 결과 현재의 사용자 주파수의 간격에 대해서는 각각의 데이터를 독립적으로 처리하는데 상호간의 간섭에 대한 영향은 무시할 수 있음을 확인하였다.

  • PDF

System Phase Noise Spectrum of the Transmission and Receiving System for COMS Sensor Data (통신해양기상위성 센서 데이터 송수신 시스템의 시스템 위상 잡음 스펙트럼)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1247-1253
    • /
    • 2007
  • The system phase noise spectrum distribution for COMS sensor data transmitter and receiver system was proposed in this paper. On the basis of the analyzed design parameter to reduce the phase noise effect in a receiver, the optimal system phase noise were proposed for raw, IRIT and HRIT data transmission that are sensor data, respectively. The proposed system phase noise provides the qualified transmission performance of sensor data and reduces the performance degradation due to phase noise generating in the transmission channel. Also the system phase noise spectrums are utilized in the design of frequency generation source for sensor data transmission and receiver system.