• Title/Summary/Keyword: HPPD Inhibitor

Search Result 7, Processing Time 0.024 seconds

Herbicidal Activity of New Rice Herbicide Pyrimisulfan+Mefenacet SC against Sulfonlurea-Resistant Sea Club Rush (Scirpus planiculmis) (설포닐우레아계 제초제 저항성 새섬매자기에 대한 신규 제초제 Pyrimisulfan+Mefenacet SC의 약제방제 효과)

  • Park, Min-Sik;Park, Yong-Seog;Kim, Sung-Min;Lee, Jeong-Deug
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.192-198
    • /
    • 2011
  • This study was conducted to investigate the herbicidal activity against Scirpus planiculmis (SCPPL) which has been reported as resistant biotype on sulfonylurea (SU) herbicides at the west coast reclaimed area first and proliferated continuously at Hwasung and Pyeongtaek in Gyeonggi province, and some Chungnam province. In order to investigate resistance breakability against SCPPL, new rice herbicides containing tefuryltrione [p-hydrophenyl pyruvate dioxygenase (HPPD) inhibitor], pyrimisulfan and triafamone[actolactate synthethase (ALS) inhibitor] were tested. In both lab and field experiments, tefuryltrione GR, 4-HPPD inhibitor showed growth retardation with a bleaching on the young leaves of SCPPL at early time after treatment. However, it restored and regerminated with insufficient control effect. On the other hand, pyrimisulfan+mefenacet SC, triafamone+tefuryltrione GR, and ALS inhibitor showed excellent control effect on SU-resistant SCPPL with growth retardation and necrosis. In particular, pyrimisulfan+mefenacet SC showed excellent controlling effect on SU-resistant SCPPL in regional field experiments.

Herbicidal Activity of Newly Rice Herbicide Tefuryltrione Mixture against Sulfonylurea Resistant Weeds in Korea (설포닐우레아계 제초제 저항성 논잡초에 대한 신규 제초제 Tefuryltrione 합제의 약효 및 선택성)

  • Park, Min-Sik;Kim, Se-Min;Park, Yong-Seog;Lee, Kun-Sik;Woo, Jung
    • Korean Journal of Weed Science
    • /
    • v.32 no.2
    • /
    • pp.133-138
    • /
    • 2012
  • This study was conducted to investigate the herbicidal activity against resistant biotype on sulfonylurea (SU) herbicides such as Scirpus juncoides and Monochoria vaginalis at the glasshouse and paddy rice cultivation area. In order to investigate resistance breakability against SU-resistanted annual weeds, new rice herbicides containing tefuryltrione [p-hydrophenyl pyruvate dioxygenase (HPPD) inhibitor] were tested. In both lab test and field experiment, tefuryltrione mixture, 4-HPPD inhibitor had shown excellent efficacy with a bleaching on the leaves of resistant annual weeds at early time after treatment and showed excellent persistance. Especially, tefuryltrione mixture had shown excellent controlling effect on annual and perennial SU-resistant S. juncoides in the regional field experiment. In phytotoxicity test, this tefuryltrione mixture had shown good selectivity to common rice species.

Characteristics of Sensitive HIS1 Genes to the 4-HPPD Inhibiting Rice Herbicides Isolated from Several Rice Cultivars (몇 가지 벼 품종으로부터 분리한 4-HPPD저해 제초제에 감수성인 HIS1 유전자 특성)

  • Kim, Sang-Su;Park, Jae-Eup;Kim, Ye-Jin;Lee, Yong-Hwan;Lee, In-Yong;Lee, Jeongran;Moon, Byeng-Chul;Ihm, Yang-Bin
    • Weed & Turfgrass Science
    • /
    • v.5 no.4
    • /
    • pp.187-190
    • /
    • 2016
  • This study was conducted to determine phytotoxicity of domestic rice varieties and characteristic of sensitive gene involved in herbicide reaction of 4-HPPD (4-hydroxy phenylpyruvate dioxygenase) inhibiting herbicides. The five rice varieties were grown for 2 to 3 leaf stage on seedling trays and then transplanted into plastic pot: 4-Japonica type (Sangjubyeo, Sambaekbyeo, Sanduljinmi and Kumyoung) varieties and 1-Indica type variety (IR8). We trialled standard (14 g a.i. $10a^{-1}$) and double fold (28 g a.i. $10a^{-1}$) dose of benzobicyclon treatment at 10 days after transplanting in order to investigate phytoxicity. The Japonica-type Sangjubyeo showed no rice injury but Indica-type IR8 show 4-5 (standard) and 5-6 (double fold) phytoxicity levels. In spite of Japonica-type, Sanduljinmi and kumyoung showed 3-4 and 4-5 levels. Target resistant gene, Hydroxyphenylpyruvate dioxygenase inhibitor sensitive gene No.1 (HIS1) have been isolated from five domestic rice cultivars (Sangjubyeo, Sambaekbyeo, Sanduljinmi, Kumyoung and IR8). Results of the sequence through PCR, all five tested rice cultivars had HIS1 gene regardless to rice cultivars. And the difference between rice varieties from sequence of HIS1 were identified some variation in genes.

Selectivity of Tefuryltrione between Rice and Eleocharis kuroguwai

  • Song, Jong-Seok;Park, Yong Seog;Park, Min-Won;Lee, Jeong Deug;Kim, Do-Soon
    • Weed & Turfgrass Science
    • /
    • v.5 no.4
    • /
    • pp.191-195
    • /
    • 2016
  • Tefuryltrione is a new hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, which has been recently registered for the use for paddy rice, Korea. Dose-response studies were conducted to compare rice safety and weed control efficacy of tefuryltrione against Eleocharis kuroguwai. When rice and E. kuroguwai were applied at a range of doses of tefuryltrione, $GR_{90}$ values (the dose required to inhibit weed growth by 90%) of E. kuroguwai were $82.38-93.39g\;a.i.\;ha^{-1}$ in two independent experiments. The $GR_{10}$ values (the dose required to inhibit rice growth by 10%) of tefuryltrione for rice were $297.77-471.54g\;a.i.\;ha^{-1}$. As a result, the selectivity indices ($GR_{10}$ for $rice/GR_{90}$ for E. kuroguwai) of tefuryltrione were 3.19-5.72. Therefore, these results demonstrate that tefuryltrione has a relatively high selectivity between rice and E. kuroguwai with a high herbicidal activity against E. kuroguwai and a good rice safety.

Herbicidal Efficacy Affected by Different Formulation of Benzobicyclon-Mixtures Herbicides in Paddy Rice Field (Benzobicyclon 혼합제의 제형에 따른 제초활성 특성)

  • Song, Jae-Eun;Park, Mae-Sol;Jeong, Jong-Hee;Park, Eun-Hee;Jeong, Chang-Kuk
    • Korean Journal of Weed Science
    • /
    • v.31 no.4
    • /
    • pp.384-393
    • /
    • 2011
  • Sulfonylurea herbicide-resistant weeds are spreading widely and distributed about 106,951 hectare in paddy rice fields in Korea. Morever all biotype of Scirpus juncoides which were collected at 69 spots all over paddy rice fields in 2008 were identified biotype of sulfonylurea herbicide-resistant. Benzobicyclon is a p-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, which is absorbed through root and basal stem of weeds so cause bleaching of newly developing leaves. Benzobicyclon was very effective to control Scirpus juncoides, Monochoria vaginalis, sedges and broadleaves weeds, so it have been developed various formulation like a suspension concentrate (SC), a water dispersible granule (WG), a granule (GR) and a DT (tablet for Direct application). During recently 6 years, benzobicyclon-mixtures herbicides have been registered over than 54 products in paddy fields. Herbicidal efficacy by formulations of benzobicyclon and its mixture herbicides were highest in DT, followed by SC and GR. Herbicidal efficacy of the kaolin and $CaCO_3$ carrier of GR was better and stable than that of talc and bentonite carrier. Growth and yield of rice were not affected much by formulations, application rates and rice cultivation methods.

Change of Efficacy and Phytotoxicity of Paddy Herbicide under Temperature Rise (온도상승에 따른 논 제초제의 약효 및 약해 변동)

  • Park, Tae-Sun;Hwang, Jae-Bok;Bae, Hee-Soo;Park, Hong-Kyu;Lee, Gun-Hwi
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.203-211
    • /
    • 2017
  • This study was conducted to investigate the phytotoxicity of main rice varieties and control efficacy of HPPD inhibitor to major paddy weeds at the time of temperature rise due to climate change. Phytotoxicity of herbicide to rice was increased as temperature was increased, and more severe in root than shoot. The phytotoxicity of japonica rice cultivars for the rice were mild enough to recover. However, glutinous rice, super high yield rice, and Tongil rice varieties were damaged enough to decrease the yield. Shindongjinbyeo transplanted by June 15, showed phytotoxicity enough to recover. However, in the rice field on June 30 and on July 15, the rice showed a remarkable inhibition. The control effect of Monochoria vaginalis and Scirpus juncoides was more than 90% under the temperature condition controlled artificially. However, Echinochloa oryzicola was controlled 40% at $27.5^{\circ}C$, which is a high temperature condition. In rice fields with different transplanting times, annual weeds except for E. oryzicola were highly controlled by 90% or more regardless of the time of transplanting.

Application and Validation of an Optimal Analytical Method using QuEChERS for the determination of Tolpyralate in Agricultural Products (QuEChERS법을 활용한 농산물 중 제초제 Tolpyralate의 최적 분석법 선발 및 검증)

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kim, Ji-Young;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.246-252
    • /
    • 2020
  • BACKGROUND: Pesticides are broadly used to control weeds and pests, and the residues remaining in crops are managed in accordance with the MRLs (maximum residue limits). Therefore, an analytical method is required to quantify the residues, and we conducted a series of analyses to select and validate the quick and simple analytical method for tolpyralate in five agricultural products using QuEChERS (quick, easy, cheap, effective, rugged and safe) method and LC-MS/MS (liquid chromatography-tandem mass spectrometry). METHODS AND RESULTS: The agricultural samples were extracted with acetonitrile followed by addition of anhydrous magnesium sulfate, sodium chloride, disodium hydrogencitrate sesquihydrate and trisodium citrate dihydrate. After shaking and centrifugation, purification was performed with d-SPE (dispersive-solid phase extraction) sorbents. To validate the optimized method, its selectivity, linearity, LOD (limit of detection), LOQ (limit of quantitation), accuracy, repeatability, and reproducibility from the inter-laboratory analyses were considered. LOQ of the analytical method was 0.01 mg/kg at five agricultural products and the linearity of matrix-matched calibration were good at seven concentration levels, from 0.0025 to 0.25 mg/L (R2≥0.9980). Mean recoveries at three spiking levels (n=5) were in the range of 85.2~112.4% with associated relative standard deviation values less than 6.2%, and the coefficient of variation between the two laboratories was also below 13%. All optimized results were validated according to the criteria ranges requested in the Codex Alimentarius Commission (CAC) and Ministry of Food and Drug Safety (MFDS) guidelines. CONCLUSION: In conclusion, we suggest that the selected and validated method could serve as a basic data for detecting tolpyralate residue in imported and domestic agricultural products.