• Title/Summary/Keyword: HPLC-ICP/MS

Search Result 50, Processing Time 0.02 seconds

A Study for the Relation Between Selenoproteins and Korean Rectal Cancer Using Deuterium Collision Gas HPLC-ICP/MS (HPLC와 중수소 충돌기체 ICP/MS를 이용하여 분석한 셀레노단백질과 한국인 직장암과의 상관관계 연구)

  • Lee, Seo Young;Pak, Yong-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.420-426
    • /
    • 2019
  • Selenoproteins,in Korean blood serum, GPx, SelP, and SeAlb were separated and determined with the use of HPLC-ICP/MS. Deuterium was used as a collision gas and affinity column with ammonium formate was used as an eluting solvent for the accurate quantitation of selenoproteins in human blood serum. Certified reference material BCR 639 (133±12 ng g-1) was tested for the accuracy and the result was satisfactory 130±6 ng g-1. Blood serum for the rectal cancer and controlled groups were collected and analyzed to give 84±27 ng g-1, and 119±28 ng g-1, respectively. The difference was statistically obvious when t-test was performed (tcal 4.93 > t95% 2.04). The decrease for cancer group was more obvious for female and aged group. The distributions of three selenoproteins were similar with each other, which means rectal cancer group did not show any specificity for any selenoproteins. As cancer developed, GPx showed a slight decrease but not obvious while the total concentration was increasing particularly at the second stage of cancer.

Arsenic Speciation and Risk Assessment of Miscellaneous Cereals by HPLC-ICP-MS (HPLC-ICP-MS를 활용한 잡곡의 비소 화학종 및 위해 분석)

  • An, Jae-Min;Hong, Kyong-Suk;Kim, Sung-Youn;Kim, Dae-Jung;Lee, Ho-Jin;Shin, Hee-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.119-128
    • /
    • 2017
  • BACKGROUND: Miscellaneous cereal have been largely consumed in Korea as due to their physiological functions beneficial to human health. The cereals are currently a social concern because they have been found to contain heavy metals. Thus, monitoring heavy metals in the cereals is an important requirement for food safety analysis. In this study, we determined arsenic concentration in the cereals randomly harvested from different markets. METHODS AND RESULTS: Inorganic arsenic was determined by ICP-MS coupled with HPLC system. The HPLC-ICP-MS analysis was optimized based on the limit of detection and recover test to reach $0.13-1.24{\mu}g/kg$ and 94.3-102.1%, respectively. The concentrations of inorganic arsenic equivalent to daily exposure were levels of $19.91{\mu}g/day$ in mixed grain, $1.07{\mu}g/day$ in glutinous rice, $0.77{\mu}g/day$ in black brown rice, $0.13{\mu}g/day$ in barley and $0.11{\mu}g/day$ in soybeans. CONCLUSION: The levels of arsenic in miscellaneous cereals were found lower than the recommended The Joint FAO/WHO Expert Committee on Food Additives (JECFA) levels, suggesting that the cereals marketed in Korea are not potential concern in risk assessment.

Risk Analysis of Arsenic in Rice Using by HPLC-ICP-MS (HPLC-ICP-MS를 이용한 쌀의 비소 위해도 평가)

  • An, Jae-Min;Park, Dae-Han;Hwang, Hyang-Ran;Chang, Soon-Young;Kwon, Mi-Jung;Kim, In-Sook;Kim, Ik-Ro;Lee, Hye-Min;Lim, Hyun-Ji;Park, Jae-Ok;Lee, Gwang-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.291-301
    • /
    • 2018
  • BACKGROUND: Rice is one of the main sources for inorganic arsenic among the consumed crops in the world population's diet. Arsenic is classified into Group 1 as it is carcinogenic for humans, according to the IARC. This study was carried out to assess dietary exposure risk of inorganic arsenic in husked rice and polished rice to the Korean population health. METHODS AND RESULTS: Total arsenic was determined using microwave device and ICP-MS. Inorganic arsenic was determined by ICP-MS coupled with HPLC system. The HPLC-ICP-MS analysis was optimized based on the limit of detection, limit of quantitation, and recovery ratio to be $0.73-1.24{\mu}g/kg$, $2.41-4.09{\mu}g/kg$, and 96.5-98.9%, respectively. The inorganic arsenic concentrations of daily exposure (included in body weight) were $4.97{\times}10^{-3}$ (${\geq}20$ years old) $-1.36{\times}10^{-2}$ (${\leq}2$ years old) ${\mu}g/kg\;b.w./day$ (PTWI 0.23-0.63%) by the husked rice, and $1.39{\times}10^{-1}$ (${\geq}20$ years old) $-3.21{\times}10^{-1}$ (${\leq}2$ years old) ${\mu}g/kg\;b.w./day$ (PTWI 6.47-15.00%) by the polished rice. CONCLUSION: The levels of overall exposure to total and inorganic arsenic by the husked and polished rice were far lower than the recommended levels of The Joint FAO/WHO Expert Committee on Food Additives (JECFA), indicating of little possibility of risk.

Quantification of Arsenic Species in Some Seafood by HPLC-AFS (HPLC-AFS를 이용한 해산물 중 비소 화학종 분리정량)

  • Jeong, Seung-Woo;Lee, Chae-Hyeok;Lee, Jong-Wha;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.496-503
    • /
    • 2021
  • Background: Considering the expenses of and difficulties in arsenic speciation by high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), alternative measurement methods should be useful, especially for large-scale research and projects. Objectives: A measurement method was developed for arsenic speciation using HPLC-atomic fluorescence spectrometry (HPLC-AFS) as an alternative to HPLC-ICP-MS. Methods: Total arsenic and toxic arsenic species in some seafoods were determined by atomic absorption spectrometry coupled with hydride vapor generation (AAS-HVG) and HPLC-AFS, respectively. Recovery rate of arsenic species in seafood was evaluated by ultra sonication, microwave and enzyme (pepsin) for the optimal extraction method. Results: Limits of detection of HPLC-AFS for As3+, dimethylarsinate (DMA), monomethylarsonate (MMA) and As5+ were 0.39, 0.53, 0.60 and 0.64 ㎍/L, respectively. The average accuracy ranged from 97.5 to 108.7%, and the coefficient of variation was in the range of 1.2~16.7%. As3+, DMA, MMA and As5+ were detected in kelp, the sum of toxic arsenic in kelp was 40.4 mg/kg. As3+, DMA, MMA and As5+ were not detected in shrimp and squid, but total arsenic (iAS and oAS) content in shrimp and squid analyzed by AAS-HVG were 18.1 and 24.7 mg/kg, respectively. Conclusions: HPLC-AFS was recommendable for the quantitative analysis method of arsenic species. As toxic arsenic species are detected in seaweeds, further researches are needed for the contribution degree of seafood in arsenic exposure.

Speciation Analysis of Arsenic Species in Surface Water (수중의 비소 종 분리 분석)

  • Jeong, Gwan-Jo;Kim, Dok-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.621-627
    • /
    • 2008
  • In this study, a technique of speciation and determination of the trace inorganic arsenic(As(III) and As(V)) in water sample using HPLC-DRC-ICP-MS has been developed. Isocratic mobile phase of 10 mM ammonium nitrate and 10 mM ammonium phosphate monobasic was used and methanol(5 v/v%) was used as flushing solvent. Selection of the best flow rate of reaction gas, O$_2$, and optimization of the parameters such as pH and flow rate of mobile phase, and injection volume of sample for the separation and detection of arsenic species were carried out. The oxygen flow rate of 0.5 mL/min, pH of 9.4 and flow rate of 1.5 mL/min of mobile phase, and injection volume of sample of 100 $\mu$L were found to be the best parameters for the speciation and determination of arsenic species. The analytical features of the method were detection limit 0.10 and 0.08 $\mu$g/L, precision(RSD) 4.3% and 3.6%, and recovery 95.2% and 96.4% for As(III) and As(V), respectively. Analysis time was 4 minutes per sample. Linear calibration graphs with r$^2$ = 0.998 were obtained for both As(III) and As(V). Speciation analysis of arsenic species in the raw water samples collected from the tributary streams to Han River and main stream of Paldnag were performed by the proposed method. The concentrations of As(III) ranged from 0.10 to 0.22 $\mu$g/L and As(V) concentrations ranged from 0.44 to 1.19 $\mu$g/L, and 93.5% of total arsenic was found to be As(V).

Studies of separation and quantitation for selenium species in food (식품중의 셀레늄 화학종의 분리 및 정량연구)

  • Jang, Hee-Young;Min, Hyungsik;Lee, Jonghae;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.182-189
    • /
    • 2013
  • The purpose of this research is to separate and quantitate selenium species in some food samples with HPLC-ICP-MS. Cation exchange chromatography showed efficient separation only for inorganic Se species while reversed phase ion pair chromatography showed good separation for both inorganic and organic Se species. $C_8$ column ($Symmetryshield^{TM}\;RP_8$, 3.5 ${\mu}m$, $4.6{\times}150$ mm) was used with optimum condition of 5% methanol mobile phase, 0.05% of nonafluorovaleric acid ion pairing reagent. Five standard Se species of Se(IV), Se(VI), SeCys(selenocystein), SeMet(selenomethionine) and Se-M-C(seleno methyl cystein) were separated successfully under the optimum condition (mobile phase; 5% methanol, ion-pairing reagent; 0.05% nonafluorovaleric acid, flow rate; 0.9 mL $min^{-1}$). To extract Se species, microwave assisted and enzyme-assisted extraction methods were studied. In enzyme-assisted extraction method, protease I for garlic, protease I plus trypsin for pork and mackerel, and protease XIV for tuna showed the best extraction efficiency. With the optimum condition for each sample, it was found that mostly inorganic Se, SeCys and SeMet are present in the sample studied ranging from few ${\mu}g$ $g^{-1}$ to few tens of ${\mu}g$ $g^{-1}$.

Analysis of Low Molecular Weight of Seleno compounds in Selenium-Fortified Spirulina (셀레늄 강화 스피룰리나에서의 낮은 분자량 셀레노 화합물 분석)

  • Ji, Young;Lee, Jung Suk;Han, Young-Seok;Pak, Yong N.
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.335-341
    • /
    • 2019
  • Spirulina was cultured in Selenium solution and the total concentration was determined with isotope dilution technique. Low-molecular-weight-Selenium species for the water extract of Spirulina were separated and quantified with HPLC ICP/MS. Water extraction was used first and then protein enzyme (protease XIV) was used to digest and extract for the Se species in both water extract and residue. The total Se was $414.9{\pm}4.0{\mu}g\;g^{-1}$ and 77% existed in water extract while 22% remained in residue. Se species in supernatant was mostly inorganic selenate ($222.7{\mu}g\;g^{-1}$). After hydrolysis of protein, SeCys ($15.20{\mu}g\;g^{-1}$) and SeMet ($12.13{\mu}g\;g^{-1}$) were found. In residue, SeCys and SeMet were found with little inorganic Se. After protein hydrolysis of residue, more of Selenoamino acids SeCys ($9.35{\mu}g\;g^{-1}$) and SeMet ($18.23{\mu}g\;g^{-1}$) in addition to MeSeCys ($1.5{\mu}g\;g^{-1}$) were found. It is thought that inorganic selenium is mostly adsorbed on the surface of spirulina and can be easily removed by a simple distilled water extraction while most of organo-seleniums are remained in residue.

Risk Assessment of Arsenic in Agricultural Products (농산물 중 비소 위해평가)

  • Choi, Hoon;Park, Sung-Kug;Kim, Dong-Sul;Kim, Mee-Hye
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.266-272
    • /
    • 2010
  • The present study was carried out to assess exposure & risk for Korean by total and inorganic As intake through agricultural products. Total arsenic analysis was performed using microwave device and ICP-MS. 50% MeOH extraction and anion-exchange HPLC-ICP-MS method has been used to determine arsenic species. 329 samples covering 20 kinds of agricultural products were collected from various retail outlets and markets across Korea. The concentration of total As was in the range of 0.001~0.718 mg/kg, while inorganic and organic arsenic species in all samples was not determined. For risk assessment, probable daily intake was calculated and compared with provisional tolerable weekly intake (PTWI, 15 ${\mu}g$/kg b.w./week for inorganic arsenic) established by JECFA. The median daily exposure to total and inorganic As by intake of agricultural products except rice was ranged 0.0002~0.012, 0.0001~0.001 ${\mu}g$/kg b.w./day, corresponding to 0.01~0.5%, 0.002~0.1% of PTWI, respectively. The median level of total and inorganic As intake through rice was 0.603 and 0.041 ${\mu}g$/kg b.w./day, and 28.1% and 1.9% of PTWI, respectively. Therefore, the level of overall exposure to arsenic for Korean through agricultural products was below the recommended JECFA levels, indicating of least possibility of risk.