• Title/Summary/Keyword: HPLC

Search Result 5,992, Processing Time 0.038 seconds

A Safety Survey of Pesticide Residues on Agricultural Products Marketed in Incheon from 2019 to 2021 (인천광역시 유통 농산물의 잔류농약 안전성 조사)

  • Park, Byung-Kyu;Kwon, Sung-Hee;Yeom, Mi-Sook;Han, Se-Youn;Kang, Min-Jung;Joo, Kwang-Sig;Heo, Myung-Je;Kwon, Mun-Ju
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.249-259
    • /
    • 2022
  • This study investigated pesticide residues in 7,069 agricultural products distributed in the city of Incheon from 2019 to 2021. Ingestion of pesticides can cause serious carcinogenic, endocrine, neurological, and reproductive problems. Pesticide residues in the samples were analyzed using various multi-residue methods (GC-MS/MS, GC-ECD/NPD, LC-MS/MS, and HPLC-UVD) on the Korean Food Code. The violation rate of the samples exceeding the maximum residue level (MRL) of pesticide residues for the years 2019, 2020, and 2021 was 1.0%, 1.4%, and 1.1%, respectively. Diazinon, flubendiamide, procymidone, fluxametamide, and fluquinconazole were the most frequently reported violative pesticide residues. Most commonly encountered agricultural products exceeding MRLs were coriander leaves, chamnamul, chwinamul, welsh onion, and crown daisy. Agricultural products and pesticides frequently exceeding MRLs should be continuously inspected for food safety. Continuous monitoring of pesticide residues in agricultural products is indispensable to improve consumer safety by preventing the distribution of agricultural products exceeding MRLs.

Validation of an Analytical Method for Deacetylasperulosidic acid, Total Sugar and Monosaccharide Analysis in Fermented Morinda citrifolia Polysaccharide Powder (발효노니 다당체 분말의 deacetylasperulosidic acid, 총당 및 단당류 분석법 검증)

  • Kwon, Heeyeon;Choi, Jisoo;Kim, Soojin;Kim, Eunmin;Uhm, Jihyun;Kim, Bokyung;Lee, Jaeyeon;Kim, Yongdeok
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.216-224
    • /
    • 2022
  • This study was aimed at validating the analysis methods for deacetylasperulosidic acid (DAA), total sugar, galacturonic acid, glucose, and galactose, which are the indicator components of fermented Morinda citrifolia polysaccharide extract (Vitalbos). We modified the previously reported methods for validating the analytical methods. The specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) were measured using phenol-sulfuric acid method and high-performance liquid chromatography (HPLC). The retention time and spectrum of the standard solution of Vitalbos coincided, confirming the specificity. The calibration curve correlation coefficient (R2), of five indicator components, ranged from 0.9995-0.9998, indicating excellent linearity of 0.99 or more. The intra-day and inter-day precision range of the assay was 0.14-3.01%, indicating a precision of less than 5%. The recovery rate was in the range of 95.13-105.59%, presenting excellent accuracy. The LOD ranged from 0.39 to 0.84 ㎍/mL and the LOQ ranged from 1.18 to 2.55 ㎍/mL. Therefore, the analytical method was validated for DAA, total sugar, galacturonic acid, glucose, and galactose, in Vitalbos. The indicator component content in Vitalbos was determined using a validated method. The contents of DAA, total sugar, galacturonic acid, glucose, and galactose were 2.31±0.06, 475.92±5.95, 72.83±1.05, 71.63±2.44, and 67.30±2.31 mg/g of dry weight, respectively. These results suggest that the developed analytical method is efficient and could contribute to the quality control of Vitalbos, as a healthy functional food material.

Production of highly enriched GABA through Lactobacillus plantarum fermentation of katsuobushi protein hydrolyzate made from Dendropanax morbiferus extract fermented by Bacillus subtilis (황칠나무 추출물의 고초균 발효물로 제조된 가쓰오부시 단백가수분해물의 Lactobacillus plantarum 발효를 통한 고농도 GABA 생산)

  • Yu-Jeong An;Nak-Ju Sung;Sam-Pin Lee
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2023
  • To develop a multi-functional ingredient, the bioconversion of katsuobushi protein was optimized using Bacillus subtilis HA and Lactobacillus plantarum KS2020. The Dendropanax morbiferus extract (DME) culture with protease activity (102 unit/mL) was prepared by B. subtilis with 2% glucose and 1% skim milk through one day of alkaline fermentation. Katsuobushi protein was effectively hydrolyzed by the DME culture at 60℃ for 3 hours, resulting in a tyrosine content of 156.85 mg%. Subsequently, a second lactic acid fermentation was carried out with 10% monosodium glutamate (MSG) using L. plantarum KS2020 to produce higher levels of GABA. Following co-cultivation for three days, DME exhibited a pH of 8.3 (0% acidity). After seven days, the viable cell count of L. plantarum increased to 9.33 CFU/mL, but viable Bacillus cells were not detected. Taken together, a multi-functional ingredient with enriched GABA, peptides, probiotics, and umami flavor was developed through lactic acid fermentation using hydrolyzed katsuobushi protein. These results indicate that katsuobushi protein could be used as a byproduct to produce a palatable protein hydrolysate using alkaline-fermented DME culture as a proteolytic enzyme source.

Characteristics and anti-obesity effect of fermented products of coffee wine (커피발효물의 발효특성 및 항비만 효과)

  • So Hyun Park;Hyeon Hwa Oh;Do Youn Jeong;Young-Soo Kim
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.703-715
    • /
    • 2023
  • This study was conducted to investigate the fermentation characteristics and anti-obesity effects of acetic acid fermentation products of coffee wine. The live cell counts, soluble solids, pH and total acidity of the acetic acid unfermented coffee wine (AUFCW; day 0, before fermentation) were 6.35 log CFU/mL, 8.10 °Brix, 3.88, and 1.29%, respectively, while the acetic acid fermented coffee wine (AFCW; day 15, after fermentation) were 4.40 log CFU/mL, 8.57 °Brix, 3.07, and 7.45%, respectively. Pancreatic lipase inhibitory activity tended to increase as the acetic acid fermentation period increased. The anti-obesity effects of AFCW on 3T3-L1 cells, which was induced by MDI, were evaluated based on the lipid accumulation rate, leptin expression, and fat production-related gene expression (PPAR-γ and SREBP-1c) at the mRNA level. In the case of AFCW, the lipid accumulation rate and leptin expression were decreased to 69.37% and 50.20% at a concentration of 200 ㎍/mL, respectively, and the expression levels of PPAR-γ and SREBP-1c at the mRNA level were decreased to 79.89% and 48.81%, respectively. These results indicate that anti-obesity effect of acetic acid fermentation products could be increased by acetic acid fermentation of coffee wine.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF

A Study on the Conversion to Feed Stuff from Cellulosic Biomass (섬유질자원(纖維質資源)의 사료(飼料) 전환(轉換))

  • Lee, Ke-Ho;Sung, Chang-Geun;Chung, Kyu-Ok
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.29-46
    • /
    • 1984
  • To utilize several species of hard wood as raw materials of feed products, fermentation characteristics of cellulosic substrates to single cell protein was investigated, and results were summarized as follows. Among the microorganisms investigated, Tricoderma viride was selected as one of the most cellulolytic. Mixed culture of fungi did not show a synergistic effect on cellulose degradation. When the fungi were cultured at $28^{\circ}C$ for 7 days in a medium containing wheat bran 25 g, cellulose 0.25 g, proteose peptone 0.025 g and tween 800.025 g, cellulotic activities on carboxy methyl cellulose and filter paper reached maximum at 12 hr. The alkali treatment resulted in increased degradation of substrate from 13 to 18% when treated with enzymes for 12h, and reducing sugar formation increased with decreased size of substrates. Glucose was a very good feedback inhibitor of the enzyme from T.viride than that of xylose. When the substrate was rehydrolyzed, hydrolysis rate was 31% to reducing sugars within 12 hr. Quantative anlysis with HPLC showed the ratio of glucose to xylose in sugar syrups as 1.77 to 1. For the purpose of producing cellulosic-single cell protein from the sawdust of mulberry tree, 15 strains of xylose-assimilating yeast were isolated from 42 samples of rotten woods and compost soils and examined for their ability to utilize xylose. Then three strains were selected by their strong xylose-assimilating activities. The cultivative condition, the growth characteristics, and protein and nucleic acid productivities of three strains were investigated. The results obtained were, 1. Wood hydrolysate of mulberry tree was assimilated by 5 strains of CHS-2, CHS-3, ST-40, CHS-12 and CHS-13. 2. The optimum initial pH and temperature for the growth of strain CHS-13 were 4.4 and $30^{\circ}C$. 3. The specific growth rate of strain CHS-13 was $0.23h^{-1}$ and generation time was 3.01 hrs at the optimum condition. 4. CHS-13 strain assimilated 81 % of sugar in wood hydrolysate. 5. CHS-13 strain was identified as Candida guilliermondii var. guilliermondii 6. When the CHS-13 strain was cultured in the wood hydrolysate containing yeast extract, L-protein content was increased with yeast extract concentration. 7. The L-protein and nucleic acid yields from wood hydrolysate were 0.73 mg/ml and $4.92{\times}10^{-2}\;mg/ml$ respectively. 8. An optimal nucleic acid content of CHS-13 strain was observed in the medium containing 0.2% of yeast extract.

  • PDF

Effect of temperature on pharmacokinetics of nalidixic acid, piromidic acid and oxolinic acid in olive flounder Paralichthys olivaceus following oral administration (넙치, Paralichthys olivaceus에 nalidixic acid, piromidic acid, oxolinic acid의 경구투여 약물동태에 미치는 수온의 영향)

  • Jung, Sung-Hee;Kim, Jin-Woo;Seo, Jung-Soo;Choi, Dong-Lim;Jee, Bo-Young;Park, Myoung-Ae
    • Journal of fish pathology
    • /
    • v.23 no.1
    • /
    • pp.57-67
    • /
    • 2010
  • Effects of temperature ($13{\pm}1.5^{\circ}C$, $23{\pm}1.5^{\circ}C$) on the pharmacokinetic properties of nalidixic acid (NA), piromidic acid (PA) and oxolinic acid (OA) were studied after oral administration to cultured olive flounder, Paralichthys olivaceus. Serum concentrations of these antimicrobials were determined after oral administration of a single dosage of 60 mg/kg body weight (average 700 g). At $23{\pm}1.5^{\circ}C$, the peak serum concentrations of NA, PA and OA, which attained at 10 h, 24 h and 30 h post-dose, were 11.55, 3.79 and $1.12{\mu}g/m\ell$, respectively. At $13{\pm}1.5^{\circ}C$, the peak serum concentrations of NA, PA and OA, which attained at 10 h, 15 h and 30 h post-dose, were 6.36, 1.4 and $1.01{\mu}g/m\ell$, respectively. Better absorption of NA and PA was noted at $23{\pm}1.5^{\circ}C$ compared to $23{\pm}13^{\circ}C$. The elimination of NA from serum of olive flounder was considerably faster at $23{\pm}1.5^{\circ}C$ than at $13{\pm}1.5^{\circ}C$. However, both absorption and elimination of OA were not affected significantly by temperature. The kinetic profile of absorption, distribution and elimination of these antimicrobials in serum were analyzed by fitting to a one- and two compartment model, with WinNonlin program. In the one compartment model for NA, AUC, Tmax and Cmax at $23{\pm}1.5^{\circ}C$ were $258.26{\mu}g{\cdot}h/m\ell$, 10.67 h and $8.91{\mu}g/m\ell$, respectively. The AUC, $T_{max}$ and $C_{max}$ at $13{\pm}1.5^{\circ}C$ were $341.45 {\mu}g{\cdot}h/m\ell$, 7.72 h and $6.23{\mu}g/m\ell$, respectively. In the one compartment model for PA, AUC, $T_{max}$ and $C_{max}$ at $23{\pm}1.5^{\circ}C$ were $248.12{\mu}g{\cdot}h/m\ell$, 21.15 h and $3.09{\mu}g/m\ell$, respectively. The AUC, $T_{max}$ and $C_{max}$ at $13{\pm}1.5^{\circ}C$ were $103.89{\mu}g{\cdot}h/m\ell$, 12.89 h and $1.22{\mu}g/m\ell$, respectively. In the two compartment model for OA, AUC, $T_{max}$ and $C_{max}$ at $23{\pm}1.5^{\circ}C$ were $138.20{\mu}g{\cdot}h/m\ell$, 23.95 h and $1.06{\mu}g/m\ell$, respectively. The AUC, $T_{max}$ and $T_{max}$ at $13{\pm}1.5^{\circ}C$ were $159.10{\mu}g{\cdot}h/m\ell$, 28.03 h and $1.02{\mu}g/m\ell$, respectively.

Choline and Betaine Concentrations in Breast Milk of Korean Lactating Women and the Choline and Betaine Intakes of Their Infants (한국 수유부 유즙의 콜린과 베타인 농도 및 영아의 콜린과 베타인 섭취량)

  • Jeong, Han-Ok;Suh, Yoon-Suk;Chung, Young-Jin
    • Journal of Nutrition and Health
    • /
    • v.43 no.6
    • /
    • pp.588-596
    • /
    • 2010
  • Most nutrients taken by pregnant women are secreted into their breast milk. Food contains choline together with betaine, and in human body choline is oxidized to betaine which transfer methyl group. The aim of the study was to estimate the concentrations of choline and betaine in breast milk of Korean lactating women and the choline and betaine intakes of their infants. Total choline, free choline and betaine concentrations in breast milk of some lactating women living in Daejon Metropolitan city were analyzed every month by using HPLC-MS and enzymatic method during the first five months. Total choline concentrations of breast milks were 157.64 mg/L (1.52 mmol/L), 157.83 mg/L (1.52 mmol/L), 165.99 mg/L (1.60 mmol/L), 153.67 mg/L (1.48 mmol/L), 145.05 mg/L (1.39 mmol/L) by month after delivery for five months. The concentrations of total choline and free choline in breast milks were not significantly changed for the five months while the betaine concentrations gradually decreased. Daily intake of total choline of the infants appears to be adequate for the infant's requirement according to the US DRI; 124.6 mg/d, 120.9 mg/d, 126.5 mg/d 104.1 mg/d from 2nd to 5th month after birth. Free choline and betaine intakes of the infants were not significantly changed during the four months except showing decrease in betaine intake per kg body weight. Choline intakes of the infants more correlated with choline concentrations of the breast milks (r = 0.982, p = 0.000) than intake amount of the breast milk (r = 0.414, p = 0.028). These results suggest that the choline intake of Korean breast-fed infants appears to be adequate and the intake could be affected by the choline concentration of the breast milk.

Comparison of Property Changes of Black Jujube and Zizyphus jujube Extracts during Lactic Acid Fermentation (흑대추와 일반 건조대추의 추출 및 유산발효과정 중 특성 변화)

  • Auh, Mi Sun;Kim, Yi Seul;Ahn, Seung Joon;Ahn, Jun Bae;Kim, Kwang Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.10
    • /
    • pp.1346-1355
    • /
    • 2012
  • This study was carried out to investigate the characteristics of black jujube and Zizyphus jujube extracts during lactic acid fermentation. Both extracts were fermented using Lactobacillus fermentum YL-3. As a result, viable cell number rapidly increased until 24 hours, after which it gradually decreased. Before lactic acid fermentation, the $IC_{50}$ of black jujube, which was 0.014 mg/mL, was lower than that of Zizyphus jujube. Further, black jujube showed stronger antioxidant activity (374.21 mg AA eq/g) than Zizyphus jujube. Contents of total polyphenolics in both extracts were 15.46 mg/g and 13.61 mg/g, respectively, whereas contents of total flavonoids were 374.21 ${\mu}g/g$ and 64.25 ${\mu}g/g$. After lactic acid fermentation, there was no significant increase in DPPH or ABTS free radical scavenging activity. Total polyphenolic content of Zizyphus jujube decreased to 12.39 mg/g upon fermentation, whereas flavonoid content significantly increased to 291.58 ${\mu}g/g$. Further, polyphenolic and flavonoid contents of black jujube increased from 15.46 mg/g to 17.46 mg/g and from 374.21 ${\mu}g/g$ to 1,135.29 ${\mu}g/g$, respectively. These results demonstrate that 9-Times Steamed and Dried increased functional components. Especially, lactic acid fermented black jujube showed remarkably high antioxidant activity. These results confirm the potential use of lactic acid fermented black jujube as a valuable resource for the development of functional foods.

Quality Characteristics of Kiwi Wine and Optimum Malolactic Fermentation Conditions (참다래 와인의 최적 malolactic fermentation 조건과 품질 특성)

  • Kang, Sang-Dong;Ko, Yu-Jin;Kim, Eun-Jung;Son, Yong-Hwi;Kim, Jin-Yong;Seol, Hui-Gyeong;Kim, Ig-Jo;Cho, Hyoun-Kook;Ryu, Chung-Ho
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.509-514
    • /
    • 2011
  • Maloactic fermentation (MLF) occurs after completion of alcoholic fermentation and is mediated by lactic acid bacteria (LAB), mainly Oenococcus oeni. Kiwi wine more than commercial grape wine has the problem of high acidity. Therefore, we investigated the optimal MLF conditions for regulating strong acidity and improving the quality properties of wine fermented with Kiwi fruit cultivated in Korea. For alcohol fermentation, industrial wine yeast Saccharomyces cerevisiae KCCM 12650 strains and LAB, known as MLF strains, were used to alleviate wine acidity. First, the various experimental conditions of Kiwi fruit, initial pH (2.5, 3.5, 4.5), fermenting temperature (20, 25, $30^{\circ}C$), and sugar contents (24 $^{\circ}Brix$), were adjusted, and after the fermentation period, we measured the acidity, pH, and the change in organic acid content by the AOAC method and HPLC analysis. The alcohol content of fermented Kiwi wine was 12.75%. Further, total acidity and pH of Kiwi wine were 0.78% and 3.5, respectively. Total sugar and total polyphenol contents of Kiwi wine were 38.72 mg/ml and 60.18 mg/ml, respectively. With regard to organic acid content, the control contained 0.63 mg/ml of oxalic acid, 2.99 mg/ml of malic acid, and 0.71 mg/ml of lactic acid, whereas MLF wine contained 0.69 mg/ml of oxalic acid, 0.06 mg/ml of malic acid, and 3.12 mg/ml of lactic acid. Kiwi wine had lower malic acid values and total acidity than control after MLF processing. In MLF, the optimum initial pH value and fermentation temperature were 3.5 and $25^{\circ}C$, respectively. Therefore, these studies suggest that establishment of optimal MLF conditions could improve the properties of Kiwi wine manufactured in Korea.