• 제목/요약/키워드: HOOPS

검색결과 68건 처리시간 0.023초

폐쇄형 후프의 시공성을 개선하기 위해 강재 클립형 연결장치로 보강한 대체후프를 갖는 SRC기둥의 내진거동 (Seismic Behavior of SRC Columns with Alternative Hoops by Steel Clip-Type Devices to Improve Constructability of Closed Hoops)

  • 김용주;최병정
    • 한국공간구조학회논문집
    • /
    • 제22권4호
    • /
    • pp.59-70
    • /
    • 2022
  • In SRC column, the closed hoops are applied with the same detail of both 135° standard hooks to expect the same performance as hoops of RC columns. This standard detail is actually complicated to construct, thus, two separating rebars are connected in the form of a square shape and welded over the overlapping section. But this is also complicated in construction practice. Therefore, this study describes experimental results regarding cyclic behaviors shown with alternative hoops cramped by the steel clip type-binding device instead of welding and standard specimen. As a result of the experiment, the specimens with alternative hoops of the SRC column showed comparable performance to the specimens with closed hoops. Therefore, it can be evaluated that the alternative hoops applied with the rebar confinement clips in the SRC column can replace the closed hoop.

Compressive behavior of reinforced concrete columns confined by multi-spiral hoops

  • Chen, Y.;Feng, J.;Yin, S.
    • Computers and Concrete
    • /
    • 제9권5호
    • /
    • pp.341-355
    • /
    • 2012
  • Numerical studies are performed to predict the stress-strain behavior of rectangular RC columns confined by multi-spiral hoops under axial and eccentric compressions. Using the commercial finite element package ABAQUS, the Drucker-Prager criterion and the yield surface are adopted for damaged plasticity concrete. The proposed finite element models are compared with the published experimental data. Parametric studies on concrete grades, confinement arrangement, diameter and spacing of hoops and eccentricity of load are followed. Numerical results have shown good agreements with experimental values, and indicated a proper constitutive law and model for concrete. Cross-sectional areas and spacing of the hoops have significant effect on the bearing capacity. It can be concluded that rectangular RC columns confined by multi-spiral hoops show better performance than the conventional ones.

원장방형 철근콘크리트 교각의 내진성능에 관한 실험적 연구 (An Experimental Study on Seismic Performance of RC Bridge Columns with Oblong Section)

  • 이재훈;고성현;서진원;이지영;한상엽
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.368-375
    • /
    • 2003
  • The objectives of this study were to provide experimental data on the behavior of interlocking spiral columns under cyclic loading, to compare the performance of columns with interlocking spirals to columns with U-type hoops with hook, to study the flexural detailing of interlocking spirals and other transverse steel configurations as the transverse reinforcement The oblong columns with interlocking spirals and with hooked U-type hoops and cross-ties better seismic performance than the rectangular columns with rectangular hoops and cross-ties. The oblong columns with hooked U-type hoops and cross-ties showed better seismic performance than the rectangular columns with rectangular hoops and cross-ties. And this research were to make recommendations for the design of bridge columns incorporating interlocking spirals and U-type hoops with hook as the transverse reinforcement.

  • PDF

고강도 콘크리트 전단벽체에 사용된 각형강관의 효과 (Effects of High-Strength Concrete Shear Walls with Rectangular Steel Tubes)

  • 김명준;오종한;조순호;최기봉;조철호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.209-217
    • /
    • 1998
  • Compared to normal-strength concrete, high-strength concrete has the lower lateral expansion capacity caused by the higher elastic modulus and the lower internal crack characteristic. Therefore, the effect of the lateral confining action of hoops appears slowly. Nevertheless, it has been reported that the strength and deformation capacity of high-strength concrete is improved by well-distributed hoops. Due to that argument, this investigation has been compared and analyzed by the experimental works on the deformation capacity and the confinement mechanism of high-strength concrete shear wall of the high-rise building reinforced by rectangular steel tubes and rectangular hoops at both edges. It is suggested that, using high-strength concrete($500kgf/cm^2$, $700kgf/cm^2$), hoops should be replaced with rectangular steel tubes in order to prevent closely spaced hoops at the edge of the shear wall.

  • PDF

확대단면에서 폐쇄형 외부 띠철근 배근 방법에 따른 보강기둥의 중심축하중 거동 평가 (Evaluation of Axial Behavior of Strengthened Columns according to Different Peripheral Closed Hoops in Jacket Section)

  • 황용하;양근혁;심재일;최용수
    • 대한건축학회논문집:구조계
    • /
    • 제35권7호
    • /
    • pp.139-146
    • /
    • 2019
  • This study examined the effect of various arrangement methods for forming peripheral closed hoops in the jacket section on the axial behavior of section enlargement strengthening columns. Four types of peripheral closed hoops arranged in the jacket section were prepared as follows: 1) Closed connection of prefabricated bar units (column P); 2) V-clip installation across the overlapped legs of channel-type bars (column V); 3) Use of glass fiber mesh for an alternative of steel bars (column F); and 4) combination of prefabricated bar units and glass fiber mesh (column PF). The V-clip is designed to form the closed hoops in the jacket section using the overlapped channel-type bars, preventing the opening of the channel bar legs. The glass fiber mesh is to examine the feasibility to apply for closed hoops in the jacket section as an alternative for steel bars, considering the easy construction. In the jacket section of all the strengthened columns, V-ties were arranged for supplementary ties, avoiding the interruption of the existing column. The axial stiffness and strength of the strengthened columns were insignificantly affected by the arrangement methods of closed hoops in the jacket section. The axial ductility ratio of the strengthened columns P, V, and PF was enhanced more than twice of that measured in the non-seismic existing column. However, the column F exhibited a lower ductility than the other strengthened columns because of the fracture of the mesh at the ultimate strength of the column. The V-clip approach was favorable to enhance the ductility of the strengthened column, preventing the opening of the legs of channel-type bars.

결합나선철근 및 결합원형띠철근 교각의 내진성능에 관한 실험적 연구 (An Experimental Study on Seismic Performance of RC Bridge Columns with Interlocking spirals and Interlocking circular hoops)

  • 고성현;이재훈;서진원;이지영;손혁수;최진호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.943-948
    • /
    • 2003
  • The experimental study for oblong section was carried out by the column test in weak axis. The column specimens had 3 types of transverse steel configurations, such as interlocking spirals, interlocking circular hoop ties and rectangular ties. The oblong columns with interlocking spirals and with interlocking circular hoop ties showed better seismic performance than the rectangular columns with rectangular hoops and cross-ties. The objectives of this study were to provide experimental data on the behavior of interlocking spiral columns under cyclic loading, to compare the performance of columns with interlocking spirals to columns with various transverse steel configurations, to study the flexural detailing of interlocking spirals, interlocking circular hoops, and other transverse steel configurations as the transverse reinforcement, and to make recommendations for the design of bridge columns incorporating interlocking spirals, circular hoops as the transverse reinforcement.

  • PDF

결합원형띠철근을 갖는 철근콘크리트 교각의 내진성능평가 (Seismic Performance Assessment of Reinforced Concrete Bridge Columns with Interlocking Circular Hoops)

  • 김태훈;박광순;강형택
    • 한국지진공학회논문집
    • /
    • 제15권6호
    • /
    • pp.81-90
    • /
    • 2011
  • 이 연구의 목적은 결합원형띠철근을 갖는 철근콘크리트 교각의 내진성능을 파악하는데 있다. 3개의 인터락킹 교각 실험체에 일정 축하중 하에서 횡방향 반복하중을 가하는 준정적 실험을 수행하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 사용된 해석기법은 조사된 실험체에 대하여 하중단계에 따라 성능을 비교적 정확하게 예측하였다. 실험적, 해석적 결과로부터 결합원형띠철근을 갖는 철근콘크리트 교각의 설계와 시공 실무를 향상하기 위한 상세를 제시하였다.

프리캐스트 보와 충전형 강관 기둥 접합부의 거동에 관한 실험적 연구 (The Experimental study on the behavior of precast Girder-Infilled Steel Tube Column joint)

  • 정재우;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.317-322
    • /
    • 1995
  • This study is to examine the usefulness in using precast girder-infilled steel tube column in reinforced concrete structures through the analysis of the test results, in order to develope the new composite structural system using precast girder-Infilled steel tube column, The variables of specimen are strength of concrete, the numble of hoops, the form of beam-column The variables of specimen are strength of concrete, the number of hoops, the form of beam-column joints. By raising strength of concrete and incresing number of hoops in beam-column joint, it becomes clear to take similar structure capacity to monolithic structures.

  • PDF

각형강관을 사용한 고강도 콘크리트 전단벽체에 대한 실험적 연구 (An Experimental Study on the High-Strength Concrete Shear Wall using Rectangular Steel Tubes)

  • 최기봉;조순호;김명준;오종환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.460-467
    • /
    • 1997
  • Compared to normal-strength concrete, high-strength concrete has the lower lateral expansion capacity caused by the higher elastic modulus and the lower internal crack characteristic. Therefore, the effect of the lateral confining action of hoops appears slowly and also in inefficient Nevertheless. it has been reported that the strength and deformation capacity of high-strength concrete is improved by well-distributed hoops. Due to that argument, this investigation has been compared and analyzed by the experimental works on the deformation capacity and the confinement mechanism of high-strength concrete shear wall of the high-rise building reinforced by rectangular steel tubes and rectangular hoops at both edges of the shear wall.

  • PDF