• Title/Summary/Keyword: HOG feature

Search Result 66, Processing Time 0.026 seconds

Design of Efficient Gradient Orientation Bin and Weight Calculation Circuit for HOG Feature Calculation (HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로 설계)

  • Kim, Soojin;Cho, Kyeongsoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.66-72
    • /
    • 2014
  • Histogram of oriented gradient (HOG) feature is widely used in vision-based pedestrian detection. The interpolation is the most important technique in HOG feature calculation to provide high detection rate. In interpolation technique of HOG feature calculation, two nearest orientation bins to gradient orientation for each pixel and the corresponding weights are required. In this paper, therefore, an efficient gradient orientation bin and weight calculation circuit for HOG feature is proposed. In the proposed circuit, pre-calculated values are defined in tables to avoid the operations of tangent function and division, and the size of tables is minimized by utilizing the characteristics of tangent function and weights for each gradient orientation. Pipeline architecture is adopted to the proposed circuit to accelerate the processing speed, and orientation bins and the corresponding weights for each pixel are calculated in two clock cycles by applying efficient coarse and fine search schemes. Since the proposed circuit calculates gradient orientation for each pixel with the interval of $1^{\circ}$ and determines both orientation bins and weights required in interpolation technique, it can be utilized in HOG feature calculation to support interpolation technique to provide high detection rate.

Pedestrian Recognition using Adaboost Algorithm based on Cascade Method by Curvature and HOG (곡률과 HOG에 의한 연속 방법에 기반한 아다부스트 알고리즘을 이용한 보행자 인식)

  • Lee, Yeung-Hak;Ko, Joo-Young;Suk, Jung-Hee;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.654-662
    • /
    • 2010
  • In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using second-stage cascade method, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: (i) Histogram of Oriented Gradient (HOG) which includes gradient information and differential magnitude; (ii) Curvature-HOG which is based on four different curvature features per pixel. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using both HOG and curvature-HOG. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. For the recognition-failed image, the other feature and strong classification will be used for the second stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method.

Evaluation of HOG-Family Features for Human Detection using PCA-SVM (PCA-SVM을 이용한 Human Detection을 위한 HOG-Family 특징 비교)

  • Setiawan, Nurul Arif;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.504-509
    • /
    • 2008
  • Support Vector Machine (SVM) is one of powerful learning machine and has been applied to varying task with generally acceptable performance. The success of SVM for classification tasks in one domain is affected by features which represent the instance of specific class. Given the representative and discriminative features, SVM learning will give good generalization and consequently we can obtain good classifier. In this paper, we will assess the problem of feature choices for human detection tasks and measure the performance of each feature. Here we will consider HOG-family feature. As a natural extension of SVM, we combine SVM with Principal Component Analysis (PCA) to reduce dimension of features while retaining most of discriminative feature vectors.

  • PDF

Active Sonar Classification Algorithm based on HOG Feature (HOG 특징 기반 능동 소나 식별 기법)

  • Shin, Hyunhak;Park, Jaihyun;Ku, Bonhwa;Seo, Iksu;Kim, Taehwan;Lim, Junseok;Ko, Hanseok;Hong, Wooyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, an effective feature which is capable of classifying targets among the detections obtained from 2D range-bearing maps generated in active sonar environments is proposed. Most conventional approaches for target classification with the 2D maps have considered magnitude of peak and statistical features of the area surrounding the peak. To improve the classification performance, HOG(Histogram of Gradient) feature, which is popular for their robustness in the image textures analysis is applied. In order to classify the target signal, SVM(Support Vector Machine) method with reduced HOG feature by the PCA(Principal Component Analysis) algorithm is incorporated. The various simulations are conducted with the real clutter signal data and the synthesized target signal data. According to the simulated results, the proposed method considering HOG feature is claimed to be effective when classifying the active sonar target compared to the conventional methods.

Detection method of objects with a special pattern in satellite images using Histogram Of Gradients (HOG) feature and Support Vector Machine (SVM) classifier (Histogram Of Gradients (HOG) 피쳐와 Support Vector Machine (SVM) 분류기를 이용한 위성영상에서 관심물체 탐색 방법)

  • Lim, Ingeun;Kim, Suhwan;Choi, Jonggook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.537-546
    • /
    • 2014
  • In this paper, we propose a method to detect interesting objects in inaccessible areas using high resolution satellite images. We define the interesting objects as a set of objects which have conceptually similar image patterns, not having exact sizes or shapes. In this paper, we developed a learning and classifier of Support Vector Machine (SVM) that extracts characteristic data for inputted images using Histogram of Gradients (HOG) feature and detects similar objects in other images using the characteristic data. As automatic search of interesting objects in our proposed method, we identify that our method provides reduced time and efforts for manual searching similar objects.

Pedestrian Detection Based on the HOG feature and Color Information (색상 정보와 HOG feature를 이용한 보행자 검출 및 추적)

  • Han, Sang-Yoon;Kil, Tae-Ho;Hwang, In-Sung;Cho, Nam-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.164-166
    • /
    • 2014
  • 본 논문에서는 HOG 기반 보행자 검출 및 추적에서, HOG feature의 슬라이딩 윈도우의 수와 피라미드 층 수가 알고리즘의 수행속도와 직접적인 관계가 있다는 것을 확인한다. 그리고 이 결과를 바탕으로 윈도우의 수와 피라마드 층 수를 줄이는 방법을 제안하여 전체적인 보행자 검출 및 추적 속도를 증가시키고자 한다. 구체적으로, 제안하는 알고리즘은 검출 단계에서 색상의 선명도를 이용하여 관심 영역을 프레임 내에 지정함으로써 슬라이딩 윈도우의 수를 줄이고, 부가적으로 피라미드 층 수 또한 줄어들어서 보행자 검출 속도를 향상시킨다. 그리고 추적 단계에서는 보행자로 검출된 윈도우의 색상 정보를 이용하여 검출된 보행자를 빠르고 정확하게 추적하는 하는 방법을 제시한다.

  • PDF

Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier (HOG-PCA기반 pRBFNNs 패턴분류기를 이용한 보행자 검출 시스템의 설계 및 구현)

  • Kim, Jin-Yul;Park, Chan-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1064-1073
    • /
    • 2015
  • In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.

Modified HOG Feature Extraction for Pedestrian Tracking (동영상에서 보행자 추적을 위한 변형된 HOG 특징 추출에 관한 연구)

  • Kim, Hoi-Jun;Park, Young-Soo;Kim, Ki-Bong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 2019
  • In this paper, we proposed extracting modified Histogram of Oriented Gradients (HOG) features using background removal when tracking pedestrians in real time. HOG feature extraction has a problem of slow processing speed due to large computation amount. Background removal has been studied to improve computation reductions and tracking rate. Area removal was carried out using S and V channels in HSV color space to reduce feature extraction in unnecessary areas. The average S and V channels of the video were removed and the input video was totally dark, so that the object tracking may fail. Histogram equalization was performed to prevent this case. HOG features extracted from the removed region are reduced, and processing speed and tracking rates were improved by extracting clear HOG features. In this experiment, we experimented with videos with a large number of pedestrians or one pedestrian, complicated videos with backgrounds, and videos with severe tremors. Compared with the existing HOG-SVM method, the proposed method improved the processing speed by 41.84% and the error rate was reduced by 52.29%.

A Neuro-Fuzzy Pedestrian Detection Method Using Convolutional Multiblock HOG (컨볼루션 멀티블럭 HOG를 이용한 퍼지신경망 보행자 검출 방법)

  • Myung, Kun-Woo;Qu, Le-Tao;Lim, Joon-Shik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1117-1122
    • /
    • 2017
  • Pedestrian detection is a very important and valuable part of artificial intelligence and computer vision. It can be used in various areas for example automatic drive, video analysis and others. Many works have been done for the pedestrian detection. The accuracy of pedestrian detection on multiple pedestrian image has reached high level. It is not easily get more progress now. This paper proposes a new structure based on the idea of HOG and convolutional filters to do the pedestrian detection in single pedestrian image. It can be a method to increase the accuracy depend on the high accuracy in single pedestrian detection. In this paper, we use Multiblock HOG and magnitude of the pixel as the feature and use convolutional filter to do the to extract the feature. And then use NEWFM to be the classifier for training and testing. We use single pedestrian image of the INRIA data set as the data set. The result shows that the Convolutional Multiblock HOG we proposed get better performance which is 0.015 miss rate at 10-4 false positive than the other detection methods for example HOGLBP which is 0.03 miss rate and ChnFtrs which is 0.075 miss rate.

Fast Pedestrian Detection Using Histogram of Oriented Gradients and Principal Components Analysis

  • Nguyen, Trung Quy;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • In this paper, we propose a fast and accurate system for detecting pedestrians from a static image. Histogram of Oriented Gradients (HOG) is a well-known feature for pedestrian detection systems but extracting HOG is expensive due to its high dimensional vector. It will cause long processing time and large memory consumption in case of making a pedestrian detection system on high resolution image or video. In order to deal with this problem, we use Principal Components Analysis (PCA) technique to reduce the dimensionality of HOG. The output of PCA will be input for a linear SVM classifier for learning and testing. The experiment results showed that our proposed method reduces processing time but still maintains the similar detection rate. We got twenty five times faster than original HOG feature.