• 제목/요약/키워드: HOG(Histogram of Oriented Gradient)

검색결과 39건 처리시간 0.023초

Design of Efficient Gradient Orientation Bin and Weight Calculation Circuit for HOG Feature Calculation (HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로 설계)

  • Kim, Soojin;Cho, Kyeongsoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제51권11호
    • /
    • pp.66-72
    • /
    • 2014
  • Histogram of oriented gradient (HOG) feature is widely used in vision-based pedestrian detection. The interpolation is the most important technique in HOG feature calculation to provide high detection rate. In interpolation technique of HOG feature calculation, two nearest orientation bins to gradient orientation for each pixel and the corresponding weights are required. In this paper, therefore, an efficient gradient orientation bin and weight calculation circuit for HOG feature is proposed. In the proposed circuit, pre-calculated values are defined in tables to avoid the operations of tangent function and division, and the size of tables is minimized by utilizing the characteristics of tangent function and weights for each gradient orientation. Pipeline architecture is adopted to the proposed circuit to accelerate the processing speed, and orientation bins and the corresponding weights for each pixel are calculated in two clock cycles by applying efficient coarse and fine search schemes. Since the proposed circuit calculates gradient orientation for each pixel with the interval of $1^{\circ}$ and determines both orientation bins and weights required in interpolation technique, it can be utilized in HOG feature calculation to support interpolation technique to provide high detection rate.

Noise Robust Automatic Speech Recognition Scheme with Histogram of Oriented Gradient Features

  • Park, Taejin;Beack, SeungKwan;Lee, Taejin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권5호
    • /
    • pp.259-266
    • /
    • 2014
  • In this paper, we propose a novel technique for noise robust automatic speech recognition (ASR). The development of ASR techniques has made it possible to recognize isolated words with a near perfect word recognition rate. However, in a highly noisy environment, a distinct mismatch between the trained speech and the test data results in a significantly degraded word recognition rate (WRA). Unlike conventional ASR systems employing Mel-frequency cepstral coefficients (MFCCs) and a hidden Markov model (HMM), this study employ histogram of oriented gradient (HOG) features and a Support Vector Machine (SVM) to ASR tasks to overcome this problem. Our proposed ASR system is less vulnerable to external interference noise, and achieves a higher WRA compared to a conventional ASR system equipped with MFCCs and an HMM. The performance of our proposed ASR system was evaluated using a phonetically balanced word (PBW) set mixed with artificially added noise.

New Approach to Two-wheeler Detection using Correlation Coefficient based on Histogram of Oriented Gradients

  • Lee, Yeunghak;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • 제3권4호
    • /
    • pp.119-128
    • /
    • 2016
  • This study aims to suggest a new algorithm for detecting two-wheelers on road that have various shapes according to the viewing angle for vision based intelligent vehicles. This article describes a new approach to two-wheelers detection algorithm riding on people based on modified Histogram of Oriented Gradients (HOG) using correlation coefficient (CC). The CC between two local area variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using HOG which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the CC between the area of each cell and one of two-wheelers, can be extracted as the weighting factor in process for normalizing the modified HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. In this experiment, we can get the result that the detection rate of the proposed method is higher than that of the traditional method.

Two-wheeler Detection System using Histogram of Oriented Gradients based on Local Correlation Coefficients and Curvature

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • 제2권4호
    • /
    • pp.303-310
    • /
    • 2015
  • Vulnerable road users such as bike, motorcycle, small automobiles, and etc. are easily attacked or threatened with bigger vehicles than them. So this paper suggests a new approach two-wheelers detection system riding on people based on modified histogram of oriented gradients (HOGs) which is weighted by curvature and local correlation coefficient. This correlation coefficient between two variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using the curvature of Gaussian and Histogram of Oriented Gradients (HOG) which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the correlation coefficient between the area of each cell and one of bike, can be used as the weighting factor in process for normalizing the HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. The experimental results validate the effectiveness of our proposed algorithm show higher than that of the traditional method and under challenging, such as various two-wheeler postures, complex background, and even conclusion.

Two Wheeler Recognition Using the Correlation Coefficient for Histogram of Oriented Gradients to Apply Intelligent Wheelchair (지능형 휠체어 적용을 위한 기울기 히스토그램의 상관계수를 이용한 도로위의 이륜차 인식)

  • Kim, Bum-Koog;Park, Sang-Hee;Lee, Yeung-Hak;Lee, Gang-Hwa
    • Journal of Biomedical Engineering Research
    • /
    • 제32권4호
    • /
    • pp.336-344
    • /
    • 2011
  • This article describes a new recognition algorithm using correlation coefficient for intelligent wheelchair to avoid collision for elderly or disabled people. The correlation coefficient can be used to represent the relationship of two different areas. The algorithm has three steps: Firstly, we extract an edge vector using the Histogram of Oriented Gradients(HOG) which includes gradient information and unique magnitude for each cell. From this result, the correlation coefficients are calculated between one cell and others. Secondly, correlation coefficients are used as the weighting factors for normalizing the HOG cell. And finally, these features are used to classify or detect variable and complicated shapes of two wheelers using Adaboost algorithm. In this paper, we propose a new feature vectors which is calculated by weighted cell unit to classify with multiple view-based shapes: frontal, rear and side views($60^{\circ}$, $90^{\circ}$ and mixed angle). Our experimental results show that two wheeler detection system based on a proposed approach leads to a higher detection accuracy than the method using traditional features in a similar detection time.

Automatic Pedestrian Removal Algorithm Using Multiple Frames (다중 프레임에서의 보행자 검출 및 삭제 알고리즘)

  • Kim, ChangSeong;Lee, DongSuk;Park, Dong Sun
    • Smart Media Journal
    • /
    • 제4권2호
    • /
    • pp.26-33
    • /
    • 2015
  • In this paper, we propose an efficient automatic pedestrian removal system from a frame in a video sequence. It firstly finds pedestrians from the frame using a Histogram of Oriented Gradient(HOG) / Linear-Support Vector Machine(L-SVM) classifier, searches for proper background patches, and then the patches are used to replace the deleted pedestrians. Background patches are retrieved from the reference video sequence and a modified feather blender algorithm is applied to make boundaries of replaced blocks look naturally. The proposed system, is designed to automatically detect object and generate natural-looking patches, while most existing systems provide search operation in manual. In the experiment, the average PSNR of the replaced blocks is 19.246

Pedestrian Detection using HOG Feature and Multi-Frame Operation (HOG 특징과 다중 프레임 연산을 이용한 보행자 탐지)

  • Seo, Chang-jin;Ji, Hong-il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제64권3호
    • /
    • pp.193-198
    • /
    • 2015
  • A large number of vision applications rely on matching keypoints across images. Pedestrian detection is under constant pressure to increase both its quality and speed. Such progress allows for new application. A higher speed enables its inclusion into large systems with extensive subsequent processing, and its deployment in computationally constrained scenarios. In this paper, we focus on improving the speed of pedestrian detection using HOG(histogram of oriented gradient) and multi frame operation which is robust to illumination changes in cluttering images. The result of our simulation indicates that the detection rate and speed of the proposed method is much faster than that of conventional HOG and differential images.

Human and Robot Tracking Using Histogram of Oriented Gradient Feature

  • Lee, Jeong-eom;Yi, Chong-ho;Kim, Dong-won
    • Journal of Platform Technology
    • /
    • 제6권4호
    • /
    • pp.18-25
    • /
    • 2018
  • This paper describes a real-time human and robot tracking method in Intelligent Space with multi-camera networks. The proposed method detects candidates for humans and robots by using the histogram of oriented gradients (HOG) feature in an image. To classify humans and robots from the candidates in real time, we apply cascaded structure to constructing a strong classifier which consists of many weak classifiers as follows: a linear support vector machine (SVM) and a radial-basis function (RBF) SVM. By using the multiple view geometry, the method estimates the 3D position of humans and robots from their 2D coordinates on image coordinate system, and tracks their positions by using stochastic approach. To test the performance of the method, humans and robots are asked to move according to given rectangular and circular paths. Experimental results show that the proposed method is able to reduce the localization error and be good for a practical application of human-centered services in the Intelligent Space.

A Video based Traffic Light Recognition System for Intelligent Vehicles (지능형 자동차를 위한 비디오 기반의 교통 신호등 인식 시스템)

  • Chu, Yeon Ho;Lee, Bok Joo;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • 제14권2호
    • /
    • pp.29-34
    • /
    • 2015
  • Traffic lights are common in cities and are important cues for the path planning of intelligent vehicles. In this paper, we propose a robust and efficient algorithm for recognizing traffic lights from video sequences captured by a low cost off-the-shelf camera. Instead of using color information for recognizing traffic lights, a shape based approach is adopted. In learning and detection phase, Histogram of Oriented Gradients (HOG) feature is used and a cascade classifier based on Adaboost algorithm is adopted as the main classifier for locating traffic lights. To decide the color of the traffic light, a technique based on histogram analysis in HSV color space is utilized. Experimental results on several video sequences from typical urban environment prove the effectiveness of the proposed algorithm.

Halftone Noise Removal in Scanned Images using HOG based Adaptive Smoothing Filter (HOG 기반의 적응적 평활화를 이용한 스캔된 영상의 하프톤 잡음 제거)

  • Hur, Kyu-Sung;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • 제17권2호
    • /
    • pp.316-324
    • /
    • 2012
  • In this paper, a novel descreening method using HOG(histogram of gradient)-based adaptive smoothing filter is proposed. Conventional edge-oriented smoothing methods does not provide enough smoothing to the halftone image due to the edge-like characteristic of the halftone noise. Moreover, clustered-dot halftoning method, which is commonly used in printing tends to create Moire pattern because of the intereference in color channels. Therefore, the proposed method uses HOG to distinguish edges and the amount of smoothing to be performed on the halftone image is then calculated according to the magnitude of the HOG in the edge and edge normal orientation. The proposed method was tested on various scanned halftone materials, and the results show that it effectively removes halftone noises as well as Moire pattern while preserving image details.