• 제목/요약/키워드: HMM-MLP Classifier

검색결과 5건 처리시간 0.015초

의수 제어를 위한 HMM-MLP 근전도 신호 인식 기법 (An EMG Signals Discrimination Using Hybrid HMM and MLP Classifier for Prosthetic Arm Control Purpose)

  • 권장우;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권3호
    • /
    • pp.379-386
    • /
    • 1996
  • This paper describes an approach for classifying myoelectric patterns using a multilayer perceptrons (MLP's) and hidden Markov models (HMM's) hybrid classifier. The dynamic aspects of EMG are important for tasks such as continuous prosthetic control or vari- ous time length EMG signal recognition, which have not been successfully mastered by the most neural approaches. It is known that the hidden Markov model (HMM) is suitable for modeling temporal patterns. In contrasts the multilayer feedforward networks are suitable for static patterns. Ank a lot of investigators have shown that the HMM's to be an excellent tool for handling the dynamical problems. Considering these facts, we suggest the combination of MLP and HMM algorithms that might lead to further improved EMG recognition systems.

  • PDF

유전 알고리즘이 결합된 MLP와 HMM 합성 분류기를 이용한 근전도 신호 인식 기법 (An EMG Signals Classification using Hybrid HMM and MLP Classifier with Genetic Algorithms)

  • 정정수;권장우;류길수
    • 한국멀티미디어학회논문지
    • /
    • 제6권1호
    • /
    • pp.48-57
    • /
    • 2003
  • 본 연구는 hidden Markov model(HMM)과 유전알고리 즘을 갖는 MLP(multilayer perceptron) 합성 분류기를 이용한 근전 신호의 인식에 관한 연구이다. 제안된 기법에서 유전알고리즘은 전역적인 탐색으로 신경회로망의 최적의 초기 연결강도를 선택하는데, 이로 인하여 학습속도 및 인식률이 향상되게 된다. 근전 신호의 동적 특성은 연속 운동 인식처럼 신호의 길이 및 시작점과 끝점이 일정치 않고 시변성이 큰 경우에 반드시 고려되어야 하나, 일반 신경회로망에서는 이의 적용이 용이하지 않다. 따라서, 본 연구에서는 신호의 동적 특성에 대한 적응성을 갖는 HMM과 MLP 신경회로망을 결합시킨 구조를 갖는 인식기를 제안한다. 이러한 구조는 인식기의 입장에서 볼 때 HMM의 신호의 동적 특성에 대한 적응성과, MLP의 정적인 신호에 대한 우수한 분류력이 결합되어 동적인 신호에도 높은 인식율을 갖는 특성을 갖는다.

  • PDF

근전도 신호인식을 위한 HMM과 GA-MLP의 합성에 관한 연구 (A Study on the Synthesis of HMM and GA-MLP for EMG Signal Recognition)

  • 신철규;이동훈;이상민;권장우;홍승홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.199-202
    • /
    • 1996
  • In this paper, we suggested the combination of HMM(Hidden Markov Model) and MLP (Multi-Layer Perceptron) with GA(genetic algorithm) for a recognition of EMG signals. To describe EMG signal's dynamic properties, HMM algorithm was adapted and due to its outstanding abilities in static signal classification MLP was connected as a real processor. We also used GA( Genetic Algorithm) for improving MLP's learning rate. Experimental results showed that the suggested classifier gave higher EMG signal recognition rates with faster learning time than other one.

  • PDF

분할기반 은닉 마르코프 모델과 다층 퍼셉트론 결합 영문수표필기단어 인식시스템 (A Segmentation-Based HMM and MLP Hybrid Classifier for English Legal Word Recognition)

  • 김계경;김진호;박희주
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.200-207
    • /
    • 2001
  • 본 논문에서는 분할기반 은닉 마르코프 모델(segmentation based hidden Markov model)과 다층 퍼셉트론 (multi-layer perceptron)을 결합한 영문수표 필기단어 (legal word) 인식시스템을 제안하였다. 가변길이의 필기체 영문 단어 분할결과를 인식할 수 있도록 은닉 마르코프 모델을 이용하여 명확한 분할기반 (explicit segmentation-based) 단어단위 (word level) 인식기를 구현하고 다층 퍼셉트론을 이용하여 내재적 분할기반 (implicit segmentation-based) 단어단위 인식기를 구현하였다. 그리고 이종(heterogeneous)의 두 인식기를 새로운 결합 확률추정방식에 따라 결합함으로서 상호 보완 능력을 극대화시킬 수 있는 영문수표 필기단어 인식시스템을 구현하였다. 제안한 시스템을 캐나다 콘코디아 대학의 CENPARMI 영문 수표 데이터베이스에 적용하여 실험해 본 결과 기존의 연구결과에 비해 비교적 우수한 인식성능을 얻을 수 있었다.

  • PDF

화자적응 신경망을 이용한 고립단어 인식 (Isolated Word Recognition Using a Speaker-Adaptive Neural Network)

  • 이기희;임인칠
    • 전자공학회논문지B
    • /
    • 제32B권5호
    • /
    • pp.765-776
    • /
    • 1995
  • This paper describes a speaker adaptation method to improve the recognition performance of MLP(multiLayer Perceptron) based HMM(Hidden Markov Model) speech recognizer. In this method, we use lst-order linear transformation network to fit data of a new speaker to the MLP. Transformation parameters are adjusted by back-propagating classification error to the transformation network while leaving the MLP classifier fixed. The recognition system is based on semicontinuous HMM's which use the MLP as a fuzzy vector quantizer. The experimental results show that rapid speaker adaptation resulting in high recognition performance can be accomplished by this method. Namely, for supervised adaptation, the error rate is signifecantly reduced from 9.2% for the baseline system to 5.6% after speaker adaptation. And for unsupervised adaptation, the error rate is reduced to 5.1%, without any information from new speakers.

  • PDF