• Title/Summary/Keyword: HMM-MLP Classifier

Search Result 5, Processing Time 0.018 seconds

An EMG Signals Discrimination Using Hybrid HMM and MLP Classifier for Prosthetic Arm Control Purpose (의수 제어를 위한 HMM-MLP 근전도 신호 인식 기법)

  • 권장우;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.379-386
    • /
    • 1996
  • This paper describes an approach for classifying myoelectric patterns using a multilayer perceptrons (MLP's) and hidden Markov models (HMM's) hybrid classifier. The dynamic aspects of EMG are important for tasks such as continuous prosthetic control or vari- ous time length EMG signal recognition, which have not been successfully mastered by the most neural approaches. It is known that the hidden Markov model (HMM) is suitable for modeling temporal patterns. In contrasts the multilayer feedforward networks are suitable for static patterns. Ank a lot of investigators have shown that the HMM's to be an excellent tool for handling the dynamical problems. Considering these facts, we suggest the combination of MLP and HMM algorithms that might lead to further improved EMG recognition systems.

  • PDF

An EMG Signals Classification using Hybrid HMM and MLP Classifier with Genetic Algorithms (유전 알고리즘이 결합된 MLP와 HMM 합성 분류기를 이용한 근전도 신호 인식 기법)

  • 정정수;권장우;류길수
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.48-57
    • /
    • 2003
  • This paper describes an approach for classifying myoelectric patterns using a multilayer perceptrons (MLP's) with genetic algorithm and hidden Markov models (HMM's) hybrid classifier. Genetic Algorithms play a role of selecting Multilayer Perceptron's optimized initial connection weights by its typical global search. The dynamic aspects of EMG are important for tasks such as continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most neural approaches. It is known that the hidden Markov model (HMM) is suitable for modeling temporal patterns. In contrast, the multilayer feedforward networks are suitable for static patterns. And, a lot of investigators have shown that the HMM's to be an excellent tool for handling the dynamical problems. Considering these facts, we suggest the combination of ANN and HMM algorithms that might lead to further improved EMG recognition systems.

  • PDF

A Study on the Synthesis of HMM and GA-MLP for EMG Signal Recognition (근전도 신호인식을 위한 HMM과 GA-MLP의 합성에 관한 연구)

  • Shin, C.K.;Lee, D.H.;Lee, S.M.;Kwon, J.W.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.199-202
    • /
    • 1996
  • In this paper, we suggested the combination of HMM(Hidden Markov Model) and MLP (Multi-Layer Perceptron) with GA(genetic algorithm) for a recognition of EMG signals. To describe EMG signal's dynamic properties, HMM algorithm was adapted and due to its outstanding abilities in static signal classification MLP was connected as a real processor. We also used GA( Genetic Algorithm) for improving MLP's learning rate. Experimental results showed that the suggested classifier gave higher EMG signal recognition rates with faster learning time than other one.

  • PDF

A Segmentation-Based HMM and MLP Hybrid Classifier for English Legal Word Recognition (분할기반 은닉 마르코프 모델과 다층 퍼셉트론 결합 영문수표필기단어 인식시스템)

  • 김계경;김진호;박희주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.200-207
    • /
    • 2001
  • In this paper, we propose an HMM(Hidden Markov modeJ)-MLP(Multi-layer perceptron) hybrid model for recognizing legal words on the English bank check. We adopt an explicit segmentation-based word level architecture to implement an HMM engine with nonscaled and non-normalized symbol vectors. We also introduce an MLP for implicit segmentation-based word recognition. The final recognition model consists of a hybrid combination of the HMM and MLP with a new hybrid probability measure. The main contributions of this model are a novel design of the segmentation-based variable length HMMs and an efficient method of combining two heterogeneous recognition engines. ExperimenLs have been conducted using the legal word database of CENPARMI with encouraging results.

  • PDF

Isolated Word Recognition Using a Speaker-Adaptive Neural Network (화자적응 신경망을 이용한 고립단어 인식)

  • 이기희;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.765-776
    • /
    • 1995
  • This paper describes a speaker adaptation method to improve the recognition performance of MLP(multiLayer Perceptron) based HMM(Hidden Markov Model) speech recognizer. In this method, we use lst-order linear transformation network to fit data of a new speaker to the MLP. Transformation parameters are adjusted by back-propagating classification error to the transformation network while leaving the MLP classifier fixed. The recognition system is based on semicontinuous HMM's which use the MLP as a fuzzy vector quantizer. The experimental results show that rapid speaker adaptation resulting in high recognition performance can be accomplished by this method. Namely, for supervised adaptation, the error rate is signifecantly reduced from 9.2% for the baseline system to 5.6% after speaker adaptation. And for unsupervised adaptation, the error rate is reduced to 5.1%, without any information from new speakers.

  • PDF