• Title/Summary/Keyword: HMIPv6 Security

Search Result 9, Processing Time 0.02 seconds

Authentication Mechanism for Secure Fast Handover in HMIPv6 (HMIPv6 환경에서의 안전한 Fast Handover를 위한 인증 메커니즘)

  • Kim, Min-Kyoung;Kang, Hyun-Sun;Park, Chang-Seop
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.3
    • /
    • pp.91-100
    • /
    • 2007
  • In this paper, We design and propose a protocol for supporting secure and efficient mobility in integrating fast handover and HMIPv6. In the proposed protocol which is AAA-based HMIPv6, if the MN enters the MAP domain for the first time, then it performs an Initial Local Binding Update for authentication. We propose a secure Fast Handover method using the ticket provided by MAP, which includes the secret key for authentication. Also, we analyze and compare security properties of our proposed scheme with those of other scheme using various attack scenario.

A Study on Security Architecture for F-MIPv6 (F-HMIPv6 지원을 위한 보안 아키텍처)

  • Son, Sang-Woo;Kim, Mun-Ki;Rhee, Byung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.7-8
    • /
    • 2006
  • F-HMIPv6 is protocol that supports fast handovers for Hierarchical Mobile IPv6. Unlike HMIPv6 (Hierarchical Mobile IPv6), it sends FBU(Fast Binding Update) by predicted Router's Information for a potential handover. But, The current version of this protocol doesn't ensure impeccably between mobile node and router. To make up for the weak points of the security, we propose the architecture for F-HMIPv6 protocol to structurally reinforce the security and improve weak security of among mobile node, MAP(Mobility Anchor Point), and routers for binding update when mobile node conducts handovers.

  • PDF

Improving the CGA-based HMIPv6 Security Protocol (CGA 기반의 HMIPv6 보안 프로토콜 개선)

  • You, Il-Sun;Kim, Heung-Jun;Lee, Jin-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.95-102
    • /
    • 2009
  • In 2006, Haddad, Krishnan and Soliman proposed a Cryptographically Generated Address based protocol as a standard for protecting HMIPv6. Though this protocol can provide both the strong message authentication and binding update key negotiation based on the public-key cryptography, it is still vulnerable to several attacks such as denial of service attacks and redirection attacks. This paper improves the problems caused by the protocol. The improved protocol is analyzed in terms of security and performance, and then is shown to be better than the previous one considering the two factors together.

Internetworking strategy between MANET and WLAN for Extending Hot-Spot of WLAN based on HMIPv6 (HMIPv6를 기반으로 한 무선 랜과 이동 애드 혹 네트워크 간의 인터네트워킹 기법)

  • Lee Hyewon K.;Mun Youngsong
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.38-48
    • /
    • 2006
  • For extending of hot-spot of WLAN, (2) proposes internetworking scheme between wireless LAN (WLAN) and mobile ad-hoc network (MANET), which employ the same layer-2 protocol with different mode. Compared to internetworking schemes between UMTS (Universal Mobile Telecommunications Systems) and WLAN (3-4), the scheme from (2) has relatively low overhead and latencies because WLAN and MANET are physically and logically similar to each other. However, the mode switching algorithm proposed in r2] for internetworking between WLAN and MANET only considers signal strength and determines handoff, and mobile nodes following a zigzag course in pollution area may perform handoff at short intervals. Furthermore, (2) employs mobile IPv6 (MIPv6) at base, which brings still high delay on handoff and overhead due to signal message exchange. In this paper, we present optimized internetworking scheme between WLAN and MANET, modified from (2). To settle ping-pong handoff from (2), we propose adaptive mode switching algorithm. HMIPv6 is employed for IP connectivity and mobility service in WLAN, which solves some shortcomings, such as high handoff overhead and vulnerable security. For routing in MANET, OLSR is employed, which is a proactive Protocol and has optimally reduced signal broadcasting overhead. OLSR operates with current P protocol compatibly with no change or modification. The proposed internetworking scheme based on adaptive mode switching algorithm shows better performance than scheme from (2).

Mobility Management Scheme based on User Mobility QoS and Security-Effective Network in Heterogeneous Mobile Networks (이종의 모바일 네트워크에서 사용자 이동성 QoS와 보안효과적인 네트워크 기반의 이동성관리 기법)

  • Lee, Hyeungwoo;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.87-97
    • /
    • 2015
  • To support the efficient mobility MIPv6v, FMIPv6, HMIPv6 and host-based mobility management protocols have been developed. AAAC (Authentication, Authorization, Accounting and Charging) system is applied in this paper analyzed the the existing IPv6 PMIPv6, FPMIPv6 network security effective and IPv6 MMP (Mobile Management Protocol) Features and performance analysis is performed. And IPv6 MMP seamless transfer performance in terms of packet loss probability, will be analyzed. That can be efficiently used as a method for the integration of QoS and mobility so that you can manage and control the resources presented QoSB usage. Results of evaluation results showed a better overall fast handover structure of mobility management techniques. PMIPv6 and FPMIPv6 in many respects the most efficient structure that can be specifically, a fast handover of the structure of the network-based mobility management scheme showed the best results.

An Authentication and Handoff Mechanism using AAA and HMIPv6 on NEMO Environment (이동 네트워크(NEMO)에서 HMIPv6를 적용한 AAA 인증 방안 연구)

  • Choi, Kyung;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.165-182
    • /
    • 2009
  • Mobile IPv6 spends considerable bandwidth considering that its signal volume is proportional to the mobile and also it should be strengthened to support the binding signal volume, the traffic, and effective mobility. So, the study in NEMO(Network Mobility), an extended version of Mobile IPv6, has been conducted. NEMO provides its mobility by putting several mobiles and more than one portable router into one unit called as mobile network. Because nodes access Internet via the portable router at this time, it receives transparency without any additional work and that much reduces binding signal while solving binding storm. By supporting mobility, NEMO is able to have various mobile structures which realize several networks hierarchically and it is necessary to improve its safety and security by authenticating among the upper networks or the lower ones while moving. Also, it is extremely required to begin a study in the device to improve efficiency accompanied with mobility, which is executed by the fast hand-off as well as the safe authentication. For those reasons, this paper not only classifies various NEMO mobile scenarios into 7 ways, but also provides AAA authentication of each scenario, the authentication through the safety authentication and fast handoff authentication using F+HMIPv6 and the way to reduce both signaling volume and packet delays efficiently during the handoff.

Secure MAP Discovery Schemes in Hierarchical MIPv6 (계층적 Mobile IPv6에서의 안전한 MAP 검색 기법)

  • Choi, Jong-Hyoun;Mun, Young-Song
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • The Hierarchical Mobile IPv6 (HMIPv6) has been proposed to accommodate frequent mobility of the Mobile Node and to reduce the signaling load. A Mobility Anchor Point is a router located in a network visited by the Mobile Node. The Mobile Node uses the Mobile Anchor Point as a local Home Agent. The absence of any protections between Mobile Node and Mobile Anchor Point may lead to malicious Mobile Nodes impersonating other legitimate ones or impersonating a Mobile Anchor Point. In this paper, we propose a mechanism of the secure Mobile Anther Point discovery in HMIPv6. The performance analysis and the numerical results presented in this paper show that our proposal has superior performance to other methods.

Authentication of Hierarchical Mobile IPv6 Handover Using Modified Return Rotability (Modified Return Routability를 이용한 Hierarchical Mobile IPv6 Handover 인증 기법)

  • Kim, Jung-Hwan;Yu, Ki-Sung;Park, Byung-Yeon;Noh, Min-Ki;Mun, Young-Song
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.21-28
    • /
    • 2007
  • Hierarchical Mobile IPv6 improves performance of Mobile IPv6 by managing Binding Update in terms of location, With improved handover delay, realization of delay-sensitive services (e,g, VoIP or video streaming) has become more persuadable, Comparing with Mobile IPv6, however, Hierarchical Mobile IPv6 brings security threats related to Local Binding Update to mobile network, In the RFC 4140, specific methods to authenticate Local Binding Update message are not explicitly presented. It is essential that design secure architecture to address problems related to authenticating Local Binding Update, Many secure suggestions for Local Binding Update, however, concentrate on infrastructure-based solutions such as AAA PKI. These approaches may cause scalability problem when the suggested solutions are applied to real network. Therefore we suggest authentication method that doesn't require infrastructure, In addition to authentication of Local Binding Update, our method also provides mobile node with power saving ability.

  • PDF

Authentication eXtention Scheme of Fast Handover for Secure NEMO-based PMIPv6 Networks (안전한 NEMO 기반 PMIPv6 네트워크를 위한 빠른 핸드오버를 지원하는 확장 인증기법)

  • Im, Illkyun;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.107-119
    • /
    • 2013
  • This paper reinforced security under the network evaluation of wire wireless integration of NEMO (NEwork MObility) supporting mobility and network-based PMIPv6 (Proxy Mobile IPv6). It also proposes $SK-L^2AS$ (Symmetric Key-Based Local-Lighted Authentication Scheme) based on simple key which reduces code calculation and authentication delay costs. Moreover, fast handover technique was also adopted to reduce handover delay time in PMIPv6 and X-FPMIPv6 (eXtension of Fast Handover for PMIPv6) was used to support global mobility. In addition, AX-FPMIPv6 (Authentication eXtension of Fast Handover for PMIPv6) is proposed which integrated $SK-L^2AS$ and X-FPMIPv6 by applying Piggybacks method to reduce the overhead of authentication and signaling. The AX-FPMIPv6 technique suggested in this paper shows that this technique is better than the existing schemes in authentication and handover delay according to the performance analysis.