• Title/Summary/Keyword: HLPG

Search Result 2, Processing Time 0.018 seconds

An Experimental Study on Hydrocarbon Emission Characteristics of Hydrogen Enriched LPG Fuel in a LPG Engine at Cold Start (LPG 기관의 수소 분사비율에 따른 냉간시동시 미연탄화수소 배출 특성에 관한 실험적 연구)

  • LEE, YEONGJAE;KIM, HYUNGKEUN;BANG, TAESEOK;LEE, JAEWOONG;CHO, YONGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.363-368
    • /
    • 2015
  • Finding an alternative fuel and reducing environmental pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in a LPG engine. An experimental study was carried out to obtain fundamental data for the emit HC emission characteristics at cold start of pre-mixed LPG and hydrogen in a LPG engine with various fractions of hydrogen-LPG blends. To maintain equal volume ratio of fuel blend, the amount of HC was decreased as hydrogen was gradually added. The results showed that as hydrogen increases, in-cylinder pressure increased. Also emission of unburned hydrocarbon (HC) is sharply decreased.

An Experimental Study on the Combustion and Emission Characteristics of Hydrogen Enriched LPG Fuel in a Constant Volume Chamber (정적연소기내 H2-LPG 연료의 혼합 비율에 따른 연소 및 배출가스 특성에 관한 실험적 연구)

  • Lee, Seang-Wock;Kim, Ki-Jong;Ko, Dong-Kyun;Yoon, Yu-Bin;Cho, Yong-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • Finding an alternative fuel and reducing environmental pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in constant volume chamber. An experimental study was carried out to obtain fundamental data for the combustion and emission characteristics of pre-mixed hydrogen and LPG in a constant volume chamber (CVC) with various fractions of hydrogen-LPG blends. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. Exhaust emissions were measured using a HORIBA exhaust gas analyzer for various fractions of hydrogen-LPG blends. The results showed that the rapid combustion duration was shortened, and the rate of heat release elevated as the hydrogen fraction in the fuel blend was increased. Moreover, the maximum rate of pressure rise also increased. These phenomena were attributed to the burning velocity which increased exponentially with the increased hydrogen fraction in the $H_2$-LPG fuel blend. Exhaust HC and $CO_2$ concentrations decreased, while NOX emission increased with an increase in the hydrogen fraction in the fuel blend. Our results could facilitate the application of hydrogen and LPG as a fuel in the current fossil hydrocarbon-based economy and the strict emission regulations in internal combustion engines.