• Title/Summary/Keyword: HLB(Hydrophile Lipophile Balance)

Search Result 12, Processing Time 0.015 seconds

Effect on Nonionic Surfactant Solutions on Wetting and Absorbancy of Cotton Fabrics (비이온계 계면활성제 수용액이 면직물의 습윤특성에 미치는 영향)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.8
    • /
    • pp.1444-1452
    • /
    • 2001
  • Textile materials are frequently in contact with surfactant solutions during their manufacturing or finishing processes as well as cleaning processes in use. Liquid wetting, wicking and absorbency of textile materials, and the liquid properties, surface characteristics and pore geometry of textile materials, and the liquie-solid interactions, In this paper, 10 different nonionic surfactants, including Span 20, Twen 20, 40, 60, 80, 21, 61, 81, 65, 85, were used. The surfactants were characterized by their hydrophile-lipophile-balance (HLB) values, structures, and surface tensions. The 0.1g/dL and 1.0g/dL surfactant solutions, which were both above critical micelle concentration (CMC), were used to see the concentration effects on the wetting and absorbency of cotton fabrics. The wetting behavior and liquid retention properties of hydrophobic cotton fabrics with different nonionic surfactant solutions are reported. The contact angles are greatly decreased and the water retention values are greatly increased by adding most of the surfactants studied into the system. The extents of this effects are influenced by the characteristics of surfactants and its solutions. Hydrophilic surfactants which have low number of carbon atoms or unsaturated hydrophobe structures are more effective in improving the wetting and absorbancy of hydrophobic cotton fabrics. The water retention of hydrophobic cotton fabrics has positive relations with $cos{\theta}$, adhesion tension and work of adhesion. The 1.0g/dL surfactant solutions show similar, but slightly improved wetting and absorbency characteristics of hydrophobic cotton fabrics compared to the 0.1g/dL surfactant solutions.

  • PDF

Optimizing Surfactant-Enhanced Solubilzation of LNAPL from Soil in Saturated Zone (포화지층내 저비중 비수용성 유기용매의 용해제거를 위한 계면활성제법의 최적 조작인자 도출)

  • 이재원;박규홍;박준범
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.153-164
    • /
    • 1999
  • The solubilization of BTEX was evaluated in aqueous surfactant solutions with and without several additives. Anionic surfactant(Sodium Dodecyl Sulfate, SDS) and nonionic surfactants (NEODOL(equation omitted)25-3 and $SOFTANOL\circledR-90$ were used as test surfactants. The effects of surfactant HLB(Hydrophile-Lipophile Balance) Number and hydrocarbon molar volume and polarity of BTEX on the MSR(Molar Solubilization Ratio), micelle-water partition coefficient of BTEX, and CMC(C,itical Micelle Concentration) were investigated. Optimizing treatment conditions applicable to enhanced solubilization was also studied by manupulating salinity or electrolyte control with additives of ethyl alcohol, hydrotrope, and electrolyte solution. The most effective surfactant for solubilization was found $SOFTANOL\circledR-90$, since HLB number of 13.6 is similar to those values of BTEX ranging between 11.4 and 12.2, which was also proved experimentally. Ethyl alchohol of 3% was the most effective additives in reducing CMC and improving solubilization among the conditions using SDS, NEODOL(equation omitted)25-3, and $SOFTANOL\circledR-90$ with three additives. The partitioning of BTEX between surfactant micelles and aqueous solutions was characterized by a mole fraction micelle-phase/aqueous phase partion coefficient, $K_m$. Values of log $K_m$. for BTEX compounds in surfactant solutions of this study range from 2.95 to 3.76(100mM SDS) and 2.95 to 3.49(117mM $SOFTANOL\circledR-90$. Log $K_m$ appears to be a linear function of log $K_{ow}$ for SDS and $SOFTANOL\circledR-90$. A knowledge of partitioning of BTEX in aqueous surfactant system can be a prerequisite for the understanding of the behavior of hydrophobic organic compounds in soil-water systems in which surfactants play a role in remediation of contaminated soil and facilitated transport.

  • PDF