• 제목/요약/키워드: HLA RTI

Search Result 84, Processing Time 0.016 seconds

Test-Bed for the Interoperation of Virtual-Constructive Simulation (소부대 교전훈련 Virtual-Constructive 시뮬레이션 연동개념 연구를 위한 테스트베드)

  • Kwon, Soon-Geol;Choi, Mi-Seon;Kim, Mun-Su;Lee, Tae-Eog
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.219-233
    • /
    • 2010
  • The objective of the interoperation of L-V-C Simulation is to enable practical integration training by taking advantages and compensating disadvantages of simulation models, such as Live, Virtual and Constructive models. As a study on the interoperation of L-V-C simulation, this paper suggests effective interoperation method between Virtual and Constructive simulation models and demonstrates small-size intagrated combat training model through V-C Test-Bed.

A Method of Integration Testing for Federation using Mock Object Patterns (모형 객체 패턴을 이용한 Federation 통합시험 방법)

  • Shim, Jun-Yong;Lee, Young-Heon;Lee, Seung-Young;Kim, Seh-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.41-48
    • /
    • 2011
  • The act of writing a unit test is more an act of design than of verification. It is also more an act of documentation than of verification. The act of writing a unit test closes a remarkable number of feedback loops, the least of which is the one pertaining to verification of function. Unit testing is a fundamental practice in Extreme Programming, but most non-trivial code is difficult to test in isolation. Normal unit testing is hard because It is trying to test the code from outside. On the other hand, developing unit tests with Mock Objects leads to stronger tests and to better structure of both domain and test code. In this paper, I first describe how Mock Objects are used for unit testing of federation integration. Then I describe the benefits and costs of Mock Objects when writing unit tests and code. Finally I describe a design of Mock federate for using Mock objects.

Development and Application of Remote Airborne Control Simulator for Experimentation of Manned-Unmanned Teaming of Fixed Wing UAV (고정익 유/무인기의 협업 모의를 위한 원격공중통제 시뮬레이터 개발 및 활용방안)

  • Choi, Young Mee
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • The purpose of this study was to address a Remote Airborne Control Simulator that could simulate manned-unmanned teaming (MUM-T mission) for fixed wing UAV. With rapid technological development of unmanned aerial vehicle (UAV), the mission capability of UAV has tremendously grown. The role of UAV extends from simple reconnaissance to highly automated wingman. Accordingly, the requirement of UAV ground simulator should be modified as well to meet function requirements for simulating a MUM-T mission. A developed remote airborne control simulator was developed for conducting fixed wing UAV MUM-T operation simulations on the ground. The newest MUM-T examples, usage, and application of the developed remote airborne control simulator for MUM-T simulation are also presented in this study.

Development of C2 Virtual Linked Simulator For Engineering and Engagement Level Battle Experimentation (공학-교전급 전투실험을 위한 C2 가상모의 연동 시뮬레이터 개발)

  • Lee, Sangtae;Lee, Seungyoung;Hwang, Kun-Chul;Kim, Saehwan;Lee, Kyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • The Korean naval weapon systems, combat experiments establish the concept of Battle operations, and create the future of the new weapons system. Doctrine development and training as well as ranging from experiments for evaluate the performance of mission operations for combat experiments are used. The battle lab is effectively support tool for the Korean Naval battle experiments. The battle lab is through a dedicated testing facility and to build efficient and effective simulation-based acquisition supporting environment. In this paper, the ship / submarines C2 operations virtual simulator was developed to support the concept of Battle operations of naval combat experiments in training and tactical development. The ship C2 operations virtual simulator makes the anti-ship and anti-aircraft the engagement scenario for performed experiments using the SADM. The submarines C2 operations virtual simulator makes the anti-submarine engagement scenario for performed experiments using EAS. EAS System was created before reuse. EAS system by modifying the additional interfaces HLA-RTI has been reused. Reflected in the tactics and training after analysis of the results through the battle experiment. Also increase training fidelity through operator involvement. The anti-ship and anti-aircraft system architecture (SADM) and anti-submarine system architecture (EAS) requires unique design of system framework since two separate architectures should be integrated into a system. An C2 virtual linked architecture was used to integrate different system architecture. A C2 virtual linked software framework, designed that have integrated protocol for battle experimental linkage and battlefield visualization environment.