• Title/Summary/Keyword: HL-60 Cells

Search Result 343, Processing Time 0.022 seconds

Inhibitory Effect of Paeoniflorin on Fos-Jun-DNA Complex Formation and Stimulation of Apoptosis in HL-60 Cells

  • Kwon, Hae-Young;Kim, Kyoung-Su;Park, Se-Yeon;Lee, Dug-Keun;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.28-32
    • /
    • 2001
  • The Fos-Jun heterodimers are part of the regulatory network of gene expression and nuclear proteins encoded by proto-oncogenes. The activation of Fos-Jun is important in the transmission of the tumor-promoting signal from the extracellular environment to the nuclear transcription mechanism. To search for the inhibitors of the Fos-Jun DNA complex formation, several natural products were screened and water-soluble paeoniflorin reduced the binding activity of the Fos-Jun heterodimer. This active compound was purified by silica gel column chromatography and HPLC. The electrophoresis mobility shift assay and reverse-phase HPLC test showed that paeoniflorin reduced the AP-l function. The cytotoxic effect of paeoniflorin was observed in HL-60. These results indicate that paeoniflorin blocks the Fos-Jun heterodimer-binding site of the AP-l DNA and it also has cytotoxic effects on human leukemia cell lines.

  • PDF

Evaluation on Anticancer Effect Against HL-60 Cells and Toxicity in vitro and in vivo of the Phenethyl Acetate Isolated from a Marine Bacterium Streptomyces griseus

  • Lee, Ji-Hyeok;Zhang, Chao;Ko, Ju-Young;Lee, Jung-Suck;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • We previously identified Streptomyces griseus as an anti-cancer agent (Kim et al., 2014). In this study, we isolated compounds from S. griseus and evaluated their anticancer effect and toxicity in vitro and in vivo. Preparative centrifugal partition chromatography (CPC) was used to obtain three compounds, cyclo($_{\small{L}}$-[4-hydroxyprolinyl]-$_{\small{L}}$-leucine], cyclo($_{\small{L}}$-Phe-trans-4-hydroxy-$_{\small{L}}$-Pro) and phenethyl acetate (PA). We chose PA, which had the highest anticancer activity, as a target compound for further experiments. PA induced the formation of apoptotic bodies, DNA fragmentation, DNA accumulation in $G_0/G_1$ phase, and reactive oxygen species (ROS) formation. Furthermore, PA treatment increased Bax/Bcl-xL expression, activated caspase-3, and cleaved poly-ADP-ribose polymerase (PARP) in HL-60 cells. Simultaneous evaluation in vitro and in vivo, revealed that PA exhibited no toxicity in Vero cells and zebrafish embryos. We revealed, for the first time, that PA generates ROS, and that this ROS accumulation induced the Bcl signaling pathway.

Curcumin Suppresses Activation of NF-κB and AP-1 Induced by Phorbol Ester in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su;Keum, Young-Sam;Seo, Hyo-Joung;Surh, Young-Joon
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.337-342
    • /
    • 2002
  • Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor ${\kappa}B$ (NF-${\kappa}B$) activation by preventing the degradation of the inhibitory protein $I{\kappa}B{\alpha}$ and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-${\kappa}B$ through direct interruption of the binding of NF-${\kappa}B$ to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment.

Suppression of Phorbol Ester-Induced NF-kB Activation by Capsaicin in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su;Keum, Young-Sam;Chun, Kyung-Soo;Surh, Young-Joon
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.475-479
    • /
    • 2002
  • Capsaicin, a major pungent constituent of red pepper (Capsicum annuum L.) possesses a vast variety of pharmacologic and physiologic activities. Despite its irritant properties, the compound exerts anti-inflammatory and anti-nociceptive effects. Previous studies from this laboratory revealed that capsaicin, when topically applied onto dorsal skin of female ICR mice, strongly attenuated activation of NF-kB and AP-1 induced by the typical tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), which may account for its anti-tumor promoting activity in mouse skin. In the present work, we have found that capsaicin suppresses TPA-stimulated activation of NF-kB through inhibition of $IkB{\alpha}$ degradation and blockade of subsequent nuclear translocation of p65 in human pro myelocytic leukemia HL-60 cells. Methylation of the phenolic hydroxyl group of capsaicin abolished its inhibitory effect on NF-kB DNA binding. Likewise, TPA-induced activation of AP-1 was mitigated by capsaicin treatment.

Effect of Ailanthi Cortex on the Apoptosis and Cell Cycle of HL-60 Leukemia Cell Line (HL-60 백혈병 세포의 세포고사에 미치는 저근백피의 효과)

  • Jeong Young Mok;Park Sin Ki;Lee Jun;Kim Young Mok;Yun Yong Gab;Kim Won Sin;Han Dong Min;An Won Gun;Yoon Yoo Sik;Jeon Byung Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.914-922
    • /
    • 2003
  • Ailanthus altissima has been used to settle an upset stomach, to alleviate a fever, and as an insecticide. We reported that the water extract of A. altissima induced apoptotic cell death in HL-60 human leukemia cell line. Here, we showed the dose-dependent inhibitions of cell viability by the extract, as measured by cell morphology. The cell cycle control genes are considered to play important roles in tumorigenesis. The purpose of the present study is also to investigate the effect of A. altissima on cell cycle progression and its molecular mechanism in the cells. The level of p21 protein was increased after treatment of the extract, whereas both Bcl-2 and Bax protein levels were not changed. These results suggest that A. altissima induces apoptotic cell death via p21-dependent signaling pathway in HL-60 human leukemia cell line which delete wild type p53. G1 checkpoin related gene products tested (cyclin D3, cyclin dependent kinase 4, retinoblastoma, E2F1) were decreased in their protein levels in a dose-dependent manner after treatment of the extract. Taken together, these results indicate that the increase of apoptotic cell death by A. altissima may be due to the inhibition of cell cycle in HL-60 human leukemia cell line

Effects of pyrimidine salvage inhibitors on uracil incorporation of Toxoplasma gondii (Toxoplasma gondii의 활성화된 uracil 도입 과정에 미치는 pyrimidine 대사 억제제의 영향)

  • 윤지혜;남호우
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.2
    • /
    • pp.79-84
    • /
    • 1990
  • Metabolic inhibitors which act in the process of pyrimidine salvage influenced on the uracil incorporation into nucleic acids of Toxoplasma. Inhibitors of dihydrofolate reductase, pyrimethamine and methotrexate, and inhibitors of thymidylate synthase, fluoro-uridine, fluoro·dUMP and fluoro-uracil, diminished isotopic uracil uptake in dose-dependent manners. Azauridine which suppresses do novo pyrimidine biosynthesis did not affect the salvage even in a relatively high dose. These results suggested that the activation of uracil salvage should be closely related with the function of TMP biosynthetic enzymes. The pattern of thymidine uptake had no differences between control HL-60 cells and Toxoplasma infected cells, which did not reject the specific proliferation of Texoplasma. It can be exploited to characterize the elects of various compounds related with the proliferation of Toxoplasma, especially its DNA synthesis. Key words: Toxoplasma gondii, uracil salvage, dihydrofolate reductase, thymidylate synthase TMP biosynthesis.

  • PDF

Down-Regulation of Mcl-1 by Small Interference RNA Induces Apoptosis and Sensitizes HL-60 Leukemia Cells to Etoposide

  • Karami, Hadi;Baradaran, Behzad;Esfehani, Ali;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.629-635
    • /
    • 2014
  • Background: Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Myeloid cell leukemia-1 (Mcl-1), a death-inhibiting protein that regulates apoptosis, has been shown to be overexpressed in numerous malignancies. In addition, it has been demonstrated that the expression level of the Mcl-1 gene increases at the time of leukemic relapse following chemotherapy. The aim of this study was to target Mcl-1 by small interference RNA (siRNA) and analyze its effects on survival and chemosensitivity of acute myeloid leukemia cell line HL-60. Materials and Methods: siRNA transfection was performed with a liposome approach. The expression levels of mRNA and protein were measured by real-time quantitative PCR and Western blot analysis, respectively. Trypan blue assays were performed to evaluate tumor cell growth after siRNA transfection. The cytotoxic effects of Mcl-1 siRNA (siMcl-1) and etoposide were determined using MTT assay on their own and in combination. Apoptosis was quantified using a DNA-histone ELISA assay. Results: Transfection with siMcl-1 significantly suppressed the expression of Mcl-1 mRNA and protein in a time-dependent manner, resulting in strong growth inhibition and spontaneous apoptosis. Surprisingly, pretreatment with siMcl-1 synergistically enhanced the cytotoxic effect of etoposide. Furthermore, Mcl-1 down-regulation significantly increased apoptosis sensitivity to etoposide. No significant biological effects were observed with negative control siRNA treatment. Conclusions: Our results suggest that specific suppression of Mcl-1 by siRNA can effectively induce apoptosis and overcome chemoresistance of leukemic cells. Therefore, siMcl-1 may be a potent adjuvant in leukemia chemotherapy.

Inhibitive Effects of Meju Extracts Made with a Single Inoculum of the Fungi Isolated from the Traditional Meju on the Human Leukemia Cell Line (전통 메주에서 분리된 단독균으로 제조한 메주추출물의 혈액암세포에 대한 저해효과)

  • Han, Jung;Kim, Hyun-Jeong;Lee, Sang-Sun;Lee, In-Seon
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.312-317
    • /
    • 1999
  • In order to study the antitumoral effect of meju extracts, which was made with a single inoculum of the microorganism, the cytotoxicity effects on several human leukemia cells such as promyelocytic leukemia cell (HL60), histiocytic lymphoma cell (U937) and acute T-cell leukemia Jurkat cell, and lymphocyte were analyzed by MTT assay. Twenty one microbes, mainly fungal genera, were isolated from Korean traditional mejus of different regions. From those collected isolates, meju was manufactured and extracted with 80% methanol, respectively. Meju methanol extracts exhibited low activites in cytotoxicity tests on HL60 cell, but high antitumoral effects of meju methanol extracts were shown on U937 and Jurkat cells. Meju methanol extracts made with a genera of Mucor, Absidia and Aspergillus showed prominant cytotoxic activities, especially. However all these extracts had no inhibitory effects on the cell growth of lymphocyte under the same conditions.

  • PDF

Eupatilin, a Pharmacologically Active Flavone Derived from Artemisia Plants, Induces Cell Cycle Arrest in Ras-Transformed Human Mammary Epithelial Cells

  • Kim, Do-Heeo;Na, Hye-Kyung;Surh, Young-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.153.2-154
    • /
    • 2003
  • Extracts of Artemisia asiatica Nakai (Asteraceae) possess anti-inflammatory and anti-oxidative activities. Eupatilin (5,7-dihydroxy-3,4,6-tri-methoxy-flavone), one of the pharmacologically active ingredients derived from Artemisia asiatica, was shown to induce apoptosis in human promyelocytic leukemia (HL-60) cells (H.-J. Seo and Y.-J. Surh, Mutat. Res., 496, 191-198, 2001). In the present study, we examined the cytostatic effects of eupatilin in H-ras-transformed human breast epithelial (MCF10A-ras) cells. (omitted)

  • PDF

The Effects of Purified Artemia Extract Proteins on Proliferation, Differentiation and Apoptosis of Human Leukemic HL-60 Cells

  • Deezagi, Abdolkhaleg;Chashnidel, Azadeh;Hagh, Neda Vaseli;Shahraki, Mahvash Khodabandeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5139-5145
    • /
    • 2016
  • There has been an increment in the number of studies focused on marine bioactive materials. Many peptides and other biomaterials with anticancer potential have been extracted from various marine animals. Artemia extracts have found uses in sun-light protection cosmetics and anti-aging products. However, contents of biochemical compounds in Artemia spp. and molecular mechanisms of have not been clearly studied in leukemic cells in vitro. In this work, we isolated and purified proteins of Artemia Urmiana. Six clear fractions (A-F) observed on DEAE-cellulose chromatography were assayed for effects on cell growth, differentiation and apoptosis using the human leukemic HL-60 cell line. Cell proliferation analysis by MTT and BrdU assays indicated that did not affect cells, growth. Cells treated with crude extract and fractions A, B and C, but not E and F (up to $100{\mu}g/mL$), exhibited increase of cell growth in a dose dependent manner. Stimulatory effects of fraction D were observed at concentrations of $10{\mu}g/mL$ and above. In nitro blue tetrazolium (NBT) reduction assays, treatment with $100{\mu}g/mL$ of fraction E or F for 96 hr increased the fraction of differentiated cells up to $14.8{\pm}3.56%$ and $16.5{\pm}2.08%$ respectively. Combination of those fractions with retinoic acid had significant synergistic effects on the differentiation of cells ($56.8{\pm}3.7%$ and $67.4{\pm}4.2%$, $p{\leq}0.01$). Annexin-V FITC staining for apoptosis and flow cytometric assays indicated induction of apoptosis by fractions E and F up to 23.8 and 31.8% of cells.