• Title/Summary/Keyword: HIV

Search Result 917, Processing Time 0.025 seconds

Nanotechnology in reproductive medicine: Opportunities for clinical translation

  • Shandilya, Ruchita;Pathak, Neelam;Lohiya, Nirmal Kumar;Sharma, Radhey Shyam;Mishra, Pradyumna Kumar
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.245-262
    • /
    • 2020
  • In recent years, nanotechnology has revolutionized global healthcare and has been predicted to exert a remarkable effect on clinical medicine. In this context, the clinical use of nanomaterials for cancer diagnosis, fertility preservation, and the management of infertility and other pathologies linked to pubertal development, menopause, sexually transmitted infections, and HIV (human immunodeficiency virus) has substantial promise to fill the existing lacunae in reproductive healthcare. Of late, a number of clinical trials involving the use of nanoparticles for the early detection of reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics have been conducted. However, most of these trials of nanoengineering are still at a nascent stage, and better synergy between pharmaceutics, chemistry, and cutting-edge molecular sciences is needed for effective translation of these interventions from bench to bedside. To bridge the gap between translational outcome and product development, strategic partnerships with the insight and ability to anticipate challenges, as well as an indepth understanding of the molecular pathways involved, are highly essential. Such amalgamations would overcome the regulatory gauntlet and technical hurdles, thereby facilitating the effective clinical translation of these nano-based tools and technologies. The present review comprehensively focuses on emerging applications of nanotechnology, which holds enormous promise for improved therapeutics and early diagnosis of various human reproductive tract diseases and conditions.

Immunostimulatory Activity of Syneilesis palmata Leaves through Macrophage Activation and Macrophage Autophagy in Mouse Macrophages, RAW264.7 Cells

  • So Jung Park;Jeong Won Choi;Hyeok Jin Choi;Seung Woo Im;Jin Boo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.934-940
    • /
    • 2023
  • Syneilesis palmata (SP) is a traditional medicinal plant. SP has been reported to have anti-inflammatory, anticancer, and anti-human immunodeficiency virus (HIV) activities. However, there is currently no research available on the immunostimulatory activity of SP. Therefore, in this study, we report that S. palmata leaves (SPL) activate macrophages. Increased secretion of both immunostimulatory mediators and phagocytic activity was observed in SPL-treated RAW264.7 cells. However, this effect was reversed by the inhibition of TLR2/4. In addition, inhibition of p38 decreased the secretion of immunostimulatory mediators induced by SPL, and inhibition of TLR2/4 decreased the phosphorylation of p38 induced by SPL. SPL augmented p62/SQSTM1 and LC3-II expression. The increase in protein levels of p62/SQSTM1 and LC3-II induced by SPL was decreased by the inhibition of TLR2/4. The results obtained from this study suggest that SPL activates macrophages via TLR2/4-dependent p38 activation and induces autophagy in macrophages via TLR2/4 stimulation.

Selenium and Human Health : from the view of anticarcinogenic effects (셀레늄과 인간의 건강 : 항암효과를 중심으로)

  • Kim, W.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.89-109
    • /
    • 2002
  • 필수 미량원소인 셀레늄은 인간의 건강에 기본적으로 중요한 역할을 하는 물질이다. 항산화 관여 효소의 작용과 구조역할을 담당하는 셀레늄이 함유된 단백질(selenoproteins)은 항산화 기능이 있을 뿐만 아니라, 갑상선호르몬의 활성화에 관여하는 것으로 밝혀졌다. 또한, 셀레늄은 정상적인 면역체계의 유지에 필요하며, HIV(human immunodeficiency virus)가 진행되어 AIDS로 발전되는 것을 억제하는 작용이 있다는 사실도 밝혀지고 있으며, 정자의 생성과 운동성에 관계하기도 한다. 우울증 환자가 셀레늄을 섭취하게 되면 효과가 있으며, 셀레늄이 순환계질환의 발생을 억제하는 것으로 알려지고 있다. 특히 최근에는 셀레늄의 섭취가 암발생을 예방할 수 있다는 역학조사결과를 토대로, 대규모 셀레늄 임상실험이 다국적 연구의 형태로 2개의 프로젝트(PRECISE, SELECT)가 수행 중이다. 한편, 셀레늄의 항암효과에 대한 세포수준에서의 연구가 활발하게 이루어지고 있으며, 어느 정도 가시적인 결과를 보이고 있다. 따라서, 셀레늄에 대한 재평가가 우리 나라에서도 이루어져야 한다. 그러기 위해서는 지역별로 셀레늄의 정확한 섭취량조차도 파악되어 있지 않을 뿐만 아니라 일일권장량 값조차 정확하지 않은 현실을 볼 때, 셀레늄의 기본적 연구에 대한 관심을 가져야 할 때라고 판단된다.

Immunostimulatory Activity of Syneilesis palmata Leaves through Macrophage Activation and Macrophage Autophagy

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.44-44
    • /
    • 2023
  • Syneilesis palmata (SP) has been used as a traditional medicinal plant and vegetable. SP was reported to exert pharmacological activities such as anti-inflammation, anti-cancer, and anti-HIV. However, there are no studies on the immunostimulatory activity of SP. Thus, in this study, we report that S. palmata leaves (SPL) induce the activation of macrophages. An increase in both secretions of immunostimulatory mediators and phagocytotic activity was observed in SPL-treated RAW264.7 cells. However, this was reversed by inhibition of TLR2/4. In addition, the p38 inhibition reduced the SPL-mediated secretion of immunostimulatory mediators, and the SPL-mediated p38 activation was blocked by the TLR2/4 inhibition. SPL augmented both p62/SQSTM1 and LC3-II. TLR2/4 inhibition blocked the SPL-mediated increase of p62/SQSTM1 and LC3-II. These findings indicate that SPL may activate macrophages through TLR2/4-dependent p38 activation and activate autophagy through TLR2/4 stimulation.

  • PDF

Determination of N-nitrosodimethylamine in zidovudine using high performance liquid chromatography-tandem mass spectrometry

  • Yujin Lim;Aelim Kim;Yong-Moon Lee;Hwangeui Cho
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.281-290
    • /
    • 2023
  • Zidovudine is an antiretroviral agent prescribed for the prevention and treatment of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). It is typically recommended to be used in combination with other antiretroviral drugs. Zidovudine has the potential to generate N-nitrosodimethylamine (NDMA) in the presence of dimethylamine and nitrite salt under acidic reaction conditions during the drug manufacturing process. NDMA is a potent human carcinogen that may be detected in drug substances or drug products. An analytical method was developed to determine NDMA in pharmaceuticals including zidovudine using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The analysis involved reversed-phase chromatography on a Kinetex F5 column with a mobile phase comprising water-acetonitrile mixtures. The detection of positively charged ions was conducted using atmospheric pressure chemical ionization (APCI). The calibration curve demonstrated excellent linearity (r = 0.9997) across the range of 1-50 ng/mL with a highly sensitive limit of detection (LOD) at 0.3 ng/mL. The developed method underwent thorough validation for specificity, linearity, accuracy, precision, robustness, and system suitability. This sensitive and specific analytical method was applied for detecting NDMA in zidovudine drug substance and its formulation currently available in the market, indicating its suitability for drug quality management purposes.

Present and Future Agricultural Extension System of Malawi (말라위 농촌지도사업의 현재와 미래)

  • Magomero, Siliro Nkhukuzalira;Park, Duk-Byeong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.21 no.2
    • /
    • pp.211-254
    • /
    • 2014
  • Malawi's agricultural extension system has been subjected to a number of criticisms in recent times for failing to contribute significantly to agricultural development and for not responding to the needs of the smallholder farmers. Despite this, extension is still seen as key to improving poverty and rural livelihoods.There is a number of challenges facing extension that require a response from the public sector and other stakeholders. A clear and positive response to these challenges will help shape the future of agricultural extension in Malawi for the benefit of all farmers and the attainment of the broad policy objectives of government: democratization, market liberalization, decentralization, HIV/AIDS crisis, shrinking public sector resources, public sector reform, and co-ordination, etc. The mission is to provide pluralistic demand driven extensions services and promote equalisation and co-ordination in service provision in order to achieve food security at household level, there-by reducing poverty. On the other hand the vision is that 'All farmers' demand and access high quality extension services from those best able to provide them'. DAES implements its extension policy through the District Agricultural Extension Services System (DAESS), based on Model Village Approach.

Biological Activities of Soyasaponins and Their Genetic and Environmental Variations in Soybean (콩 Saponin의 생리활성 기능과 함량변이)

  • 김용호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.49-57
    • /
    • 2003
  • There is much evidence suggesting that compounds present in soybean can prevent cancer in many different organ systems. Especially, soybean is one of the most important source of dietary saponins, which have been considered as possible anticarcinogens to inhibit tumor development and major active components contributing to the cholesterol-towering effect. Also they were reported to inhibit of the infectivity of the AIDS virus (HIV) and the Epstein-Barr virus. The biological activity of saponins depend on their specific chemical structures. Various types of triterpenoid saponins are present in soy-bean seeds. Among them, group B soyasaponis were found as the primary soyasaponins present in soybean, and th e 2, 3-dihydro-2, 5-dihydroxy-6- methyl-4H-pyran-4-one(DDMP)-conjugated soyasaponin $\alpha\textrm{g}$, $\beta\textrm{g}$, and $\beta$ a were the genuine group B saponins, which have health benefits. On the other hand, group A saponins are responsible for the undesirable bitter and astringent taste in soybean. The variation of saponin composition in soybean seeds is explained by different combinations of 9 alleles of 4 gene loci that control the utilization of soyasapogenol glycosides as substrates. The mode of inheritance of saponin types is explained by a combination of co-dominant, dominant and recessive acting genes. The funtion of theses genes is variety-specific and organ specific. Therefore distribution of various saponins types was different according to seed tissues. Soyasaponin $\beta\textrm{g}$ was detected in both parts whereas $\alpha\textrm{g}$ and $\beta$ a was detected only in hypocotyls and cotyledons, respectively. Soyasaponins ${\gamma}$g and $\gamma\textrm{g}$ were minor saponin constituents in soybean. In case group A saponins were mostly detected in hypocotyls. Also, the total soyasaponin contents varied among different soy-bean varieties and concentrations in the cultivated soy-beans were 2-fold lower than in the wild soybeans. But the contents of soyasaponin were not so influenced by environmental effects. The composition and concentration of soyasaponins were different among the soy products (soybean flour, soycurd, tempeh, soymilk, etc.) depending on the processing conditions.

Review on the Selenuium, an Essential Trace Mineral (기능성 미량원소 Selenium 화합물에 대한 고찰)

  • 이춘기;남중현;김재철;구본철;강문석;박광근
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.13-23
    • /
    • 2003
  • The trace mineral, selenium (Se), is an essential nutrient of fundamental importance to human health. It is also very toxic and can cause Se poisoning (selenosis) in human and animals when its intake exceeds a suitable amount. Se functions within mammalian systems primarily in the form of solenoprotein. About 35 selenoproteins have been identified, though many have not yet been fully elucidated. Selenoproteins contain Se as selenocyseine (Sec) and perform variety of structural and enzymic roles; the enzymic roles are best-known as the antioxidants for hydrogen peroxides and lipid peroxides, and the catalysts for production of activity thyroid hormone. Glutathione peroxidases ($\textrm{GP}_X$) among the selenoproteins prevent the generation of free radicals and decrease the risk of oxidative damage to tissues, as does thioredoxin reductase (TR). TR also provides reducing power for several biochemical processes. Selenoproteins P and W are involved with oxidant defense in plasma and muscle, respectively, A selenoprotein is also required for sperm motility and may reduce the risk of miscarriage. Some epidemiological studies have revealed an inverse correlation between Se status and cardiovascular disease, and there is considerable evidence 1mm population com-parison data and animal studies that Se is anticarcinogenic. It is also suggested that Se should be needed for the proper functioning of the immune system, and appear to be a key nutrient in counteracting the development of virulence and inhibiting HIV progression to AIDS. As research continues, the role of selenium in the etiology of chronic diseases like appropriate medical nutrition therapy can be delivered and its effectiveness assessed. Se status in individuals is affected by diet and the availability of the Se. The Se content of plants is affected by the content and availability of the element in the soil in which they are grown, and so greatly varies from country to country, while the Se composition of meat reflects the feeding patterns of livestock. This paper provides an overview on Se as an essential trace mineral for human.

Papaya: A gifted nutraceutical plant - a critical review of recent human health research

  • Karunamoorthi, Kaliyaperumal;Kim, Hyung-Min;Jegajeevanram, Kaliyaperumal;Xavier, Jerome;Vijayalakshmi, Jayaraman
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.2.1-2.17
    • /
    • 2014
  • The plant kingdom is considered to be a repository of modern medicine, attributable to their rich source of bio-active molecules and secondary metabolites. It is indeed the Nutraceuticals that enhance immunity and ensure a healthier life because of their prophylactic and therapeutic values. Over centuries, papaya [Caricaceae; (Carica papaya Linn.)] is a renowned nutritious and medicinal plant. Each part of the papaya like root, stem, leaf, flower, fruit, seed, rinds, and latex has its own nutraceutical properties. It serves as food, cooking aid, and Ethnomedicine to prevent and treat wide-range of diseases and disorders. It has also been traditionally used as appetite enhancer, meat tenderizer, purgative, medicinal acne, abortifacient and vermifuge. Over decades, a series of scientific attempts were made to authenticate the nutraceutical properties of papaya. These studies validated that the papaya has antiplasmodial, antitrichochramal, antitrichomonal, antidengue, and anti-cancer activities. They have also exhibited that papaya possesses antiseptic, antiparasitic, anti-inflammatory, antidiabetic, and contraceptive features, and it helps in the management of sickle-cell anaemia, HIV, heart diseases and digestional disorders too. Nevertheless, the responsible bio-active molecules and their mode of actions remain indistinct and imprecise, and this calls for further pharmacological and clinical research on them. Conclusively, papaya is one of the naturally gifted plants; though its nutraceutical properties as a food or as a quasi-drug are poorly understood or undervalued by people. Accordingly, this scrutiny, demand for instigation of public health awareness campaigns to promote papaya consumption, so that the society shall acquire optimal benefits of papaya and in turn prevent and alleviate various diseases and illness.

Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins

  • Lee, Sun-Hwa;Jeong, Hoon-Jae;Kim, Dae-Won;Sohn, Eun-Jeong;Kim, Mi-Jin;Kim, Duk-Soo;Kang, Tae-Cheon;Lim, Soon-Sung;Kang, Il-Jun;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.561-566
    • /
    • 2010
  • Though protein transduction domains (PTDs) are well known for the delivery of exogenous therapeutic proteins into living cells, the overall low efficiency of transduction is a serious obstacle. We investigated the effect of bog blueberry anthocyanins (BBA) on protein transduction efficiency and found that BBA enhanced the transduction efficiencies of Tat-SOD fusion protein into HeLa cells and mice skin. The enzymatic activities in the cells and skin tissue in the presence of BBA were markedly increased compared to controls. Further, BBA did not demonstrate any cell toxicity at various concentrations. Although the mechanism is not fully understood, we suggest that BBA might alter the conformation of the membrane, which would indicate that BBA can be used as a protein transduction enhancer for the efficient delivery of therapeutic proteins for a variety of disorders.