• Title/Summary/Keyword: HHF Test

Search Result 6, Processing Time 0.017 seconds

High Heat Flux Test of Cu/SS Mock-up for ITER First Wall (ITER 일차벽의 Cu/SS Mock-up에 대한 고열부하 시험)

  • Lee, D.W.;Bae, Y.D.;Hong, B.G.;Lee, J.H.;Park, J.Y.;Jeong, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.325-330
    • /
    • 2006
  • In order to verify the integrity of the first wall (FW) of the International Thermonuclear Experimental Reactor (ITER), the fabricated Cu/SS mock-up is tested in the JAEA Electron Beam Irradiation Test Stand (JEBIS). To fabricate the Cu/SS mock-up, CuCrZr and 316L authentic stainless steel (SS316L) are used for Cu alloy and steel, respectively The hot isostatic pressing (HIP) is used as a manufacturing method with a $1050^{\circ}C$ and 150 MPa. The high heat flux (HHF) test is performed using an electron beam with a heat flux of $5MW/m^2$ and a cycle of 15-sec on time and 30-sec off time. The temperature measurement in the HHF test shows good agreement with the results obtained from ANSYS code analysis, which is used for determining the HHF test conditions.

HIGH HEAT FLUX TEST WITH HIP BONDED 35X35X3 BE/CU MOCKUPS FOR THE ITER BLANKET FIRST WALL

  • Lee, Dong-Won;Bae, Young-Dug;Kim, Suk-Kwon;Jung, Hyun-Kyu;Park, Jeong-Yong;Jeong, Yong-Hwan;Choi, Byung-Kwon;Kim, Byoung-Yoon
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.662-669
    • /
    • 2010
  • To develop the manufacturing methods for the blanket first wall (FW) of the International Thermonuclear Experimental Reactor (ITER) and to verify the integrity of the joint, Be/Cu mockups were fabricated and tested at the KoHLT-1 (Korea Heat Load Test facility), a graphite heater facility located at the Korea Atomic Energy Research Institute (KAERI). Since Be and Cu joining is the focus of the present study, the fabricated mockups had a CuCrZr heat sink joined with three Be tiles as an armor material, unlike the original ITER blanket FW, which has a stainless steel structure and coolant tubes. Hot isostatic pressing (HIP) was carried out at $580^{\circ}C$ and 100 MPa for 2 hours as the method for Be/Cu joining. Three interlayers, namely, $1{\mu}mCr/10{\mu}mCu$, $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$, and $5{\mu}mTi/10{\mu}mCu$ were applied as a coating to the Be tiles by a physical vapor deposition (PVD) method. A shear test was performed with the specimens, which were fabricated by the same methods as those used to fabricate the mockups. The average values were 125 MPa to 180 MPa, and the samples with the $1{\mu}mCr/10{\mu}mCu$ interlayer showed the lowest value. No defect or delamination was found in the joints of the mockups by the developed ultrasonic test using a flat-type probe with a 10 MHz frequency and a 0.25 inch diameter. High heat flux (HHF) tests were performed at $1.0\;MW/m^2$ heat flux for each mockup using the given conditions, and the results were analyzed by ANSYS-CFX code. For the test criteria, an expected fatigue lifetime about 1,000 cycles was obtained by analysis with ANSYS-mechanical code. Mockups using the interlayers of $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$ and $5{\mu}mTi/10{\mu}mCu$ survived up to 1,100 cycles over the required number of cycles. However, one of the Be tiles in the other two mockups using the $1{\mu}mCr/10{\mu}mCu$ interlayer was detached during the screening test, and others were detached by discharge after 862 cycles. The integrity of the joints using the proposed interlayers was proven by the HHF test, but the other interlayer requires more study before it can be used for the joining of Be to Cu. Moreover, it was confirmed that the measured temperatures agreed well with the analysis temperatures, which were used to estimate the lifetime and that the developed facility showed its capability of the long time operation.

Performance of fly ash stabilized clay reinforced with human hair fiber

  • Rekha, L. Abi;Keerthana, B.;Ameerlal, H.
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.677-687
    • /
    • 2016
  • Industrialization and urbanization are the two phenomena that are going relentless all over the world. The consequence of this economic success has been a massive increase in waste on one hand and increasing demand for suitable sites for construction on the other. Owing to the surplus raw materials and energy requirement needed for manufacturing synthetic fibers, applications of waste fibers for reinforcing soils evidenced to offer economic and environmental benefits. The main objective of the proposed work is to explore the possibilities of improving the strength of soil using fly ash waste as an admixture and Human Hair Fiber (HHF) as reinforcement such that they can be used for construction of embankments and land reclamation projects. The effect of fiber content on soil - fly ash mixture was observed through a series of laboratory tests such as compaction tests, CBR and unconfined compression tests. From the stress - strain curves, it was observed that the UCC strength for the optimised soil - flyash mixture reinforced with 0.75% human hair fibers is nearly 2.85 times higher than that of the untreated soil. Further, it has been noticed that there is about 7.73 times increase in CBR for the reinforced soil compared to untreated soil. This drastic increase in strength may be due to the fact that HHF offer more pull-out resistance which makes the fibers act like a bridge to prevent further cracking and thereby it improves the toughness which in turn prevent the brittle failure of soil-flyash specimen. Hence, the test results reveal that the inclusion of randomly distributed HHF in soil significantly improves the engineering properties of soil and can be effectively utilized in pavements. SEM analysis explained the change of microstructures and the formation of hydration products that offered increase in strength and it was found to be in accordance with strength tests.

Manufacturing and testing of flat-type divertor mockup with advanced materials

  • Nanyu Mou;Xiyang Zhang;Qianqian Lin;Xianke Yang;Le Han;Lei Cao;Damao Yao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2139-2146
    • /
    • 2023
  • During reactor operation, the divertor must withstand unprecedented simultaneous high heat fluxes and high-energy neutron irradiation. The extremely severe service environment of the divertor imposes a huge challenge to the bonding quality of divertor joints, i.e., the joints must withstand thermal, mechanical and neutron loads, as well as cyclic mode of operation. In this paper, potassium-doped tungsten (KW) is selected as the plasma facing material (PFM), oxygen-free copper (OFC) as the interlayer, oxide dispersion strengthened copper (ODS-Cu) alloy as the heat sink material, and reduced activation ferritic/martensitic (RAFM) steel as the structural material. In this study, a vacuum brazing technology is proposed and optimized to bond Cu and ODS-Cu alloy with the silver-free brazing material CuSnTi. The most appropriate brazing parameters are a brazing temperature of 940 ℃ and a holding time of 15 min. High-quality bonding interfaces have been successfully obtained by vacuum brazing technology, and the average shear strength of the as-obtained KW/Cu and ODS-Cu alloy joints is ~268 MPa. And a fabrication route for manufacturing the flat-type divertor target based on brazing technology is set. For evaluating the reliability of the fabrication technologies under the reactor relevant condition, the high heat flux test at 20 MW/m2 for the as-manufactured flat-type KW/Cu/ODS-Cu/RAFM mockup is carried out by using the Electron-beam Material testing Scenario (EMS-60) with water cooling. This paper reports the improved vacuum brazing technology to connect Cu to ODS-Cu alloy and summarizes the production route, high heat flux (HHF) test, the pre and post non-destructive examination, and the surface results of the flat-type KW/Cu/ODS-Cu/RAFM mockup after the HHF test. The test results demonstrate that the mockup manufactured according to the fabrication route still have structural and interfacial integrity under cyclic high heat loads.

A Proposal of New Hybrid Passive Harmonic Filter for AC Motor Drive Line Filter Size Reduction (AC모터드라이브 라인필터의 축소화를 위한 신형 하이브리드고조파필터 제안)

  • Park, Byung-Ju;Yoon, Dong-Chul;Oh, Jeong-Cheol;Bae, Byung-Yeol;Hwang, An-il;Yoo, Hang-Kyu;Choi, Seok-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • ACL and DCL are have been conventionally used for reducing harmonic current on the input side of an ACMD. The current distortion ratio ITHD using ACL and DCL is only 35% to 85%, therefore to satisfy the IEEE Std. 519 requirements, the line filters has been focused as an alternative means. Those are installed between the AC power supply and the input of the ACMD, and must meet the IEEE Std. 519, be economical and be compact. To contribute to the widespread of using these line filters, we discussed concerning its topologies, simulation results, prototype test results as well as the cost evaluations. It included not only the proposed (NHHF) new hybrid harmonic filters which have both merits of simplicity and economic but also the past (BBHF) broadband harmonic filters and (HHF) hybrid harmonic filters.

Antioxidant, Anti-Wrinkle Activity and Whitening Effect of Fermented Mixture Extracts of Angelica gigas, Paeonia Lactiflora, Rehmannia chinensis and Cnidium officinale (당귀, 작약, 지황, 천궁 혼합 발효물의 항산화, 항주름 및 미백 효과)

  • Um, Ji Na;Min, Jin Woo;Joo, Kwang Sik;Kang, Hee Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.3
    • /
    • pp.152-159
    • /
    • 2017
  • Background: In this study, examined the effects of an extract of a mixture of Angelica gigas, Cnidium officinale, Paeonia lactiflora, and Rehmannia glutinosa fermented by Leuconostoc mesenteroides, with enhanced value and functionality. In oriental medicine, a mixture of these herbs is called Samultang. Methods and Results: In this study, we evaluated the effects of a fermented extract of Samultang on oxidative stress, procollagen type I expression, and melanin production. Samultang was extracted with 70% ethanol, followed by inoculation with Leuconostoc mesenteroides to obtain the fermented extract. The evaluation of viability of B16F10 cells and human foreskin fibroblast (HHF) revealed that both ethanol and fermented extracts of Samultang were non-toxic. The results of 1,1-diphenyl-2-picrylhydrazyl (DPPH) test showed that the fermented extract of Samultang ($SC_{50}value=100{\mu}g/m{\ell}$) was a more effective DPPH free radical scavenger than its ethanol extract. In addition, procollagen type I expression was higher in cells treated with the fermented extract of Samultang than in cells treated with ethanol. In the non-toxic concentration range, the fermented extract of Samultang showed strong inhibitory effect on melanin production in ${\alpha}-melanocyte$ stimulatin hormone-stimulated B16F10 cells ($IC_{50}=37.9{\mu}g/m{\ell}$). Conclusions: These results suggest that the fermented extract of Samultang has considerable protential as a cosmetic ingredient owing to its antioxidant, anti-wrinkle, and whitening effects.