• Title/Summary/Keyword: HFIT (High Frequency Isolation Transformer)

Search Result 2, Processing Time 0.017 seconds

Analysis of the Internal Electrical Characteristics of Electronic Power Transformers

  • Yi, Yang;Mao, Cheng-Xiong;Wang, Dan;Lu, Ji-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.746-756
    • /
    • 2013
  • The modularized subunit of an electronic power transformer (EPT) is a series connection of two H-bridge voltage-source converters and a DC-DC converter with a high-frequency isolation transformer (HFIT). On the basis of cascading and paralleling the modularized subunits, EPT can be used in high-voltage and large-current applications in the power system. This paper discusses the steady state analysis of the modularized subunit of EPT. Theoretical analysis considers the influences of the two H-bridge voltage-source converters on the two sides of the DC-DC converter. We deduce the formulas of the theoretical calculation on the internal electrical characteristics of EPT (e.g., the voltages of the DC-bus capacitor and the primary side peak current of the HFIT). This paper provides guidance on the design and selection of EPT key elements (e.g., the DC-bus capacitors and HFIT). Experimental results are obtained from a single subunit of a laboratory model rated at 962 V, 15 kVA. All calculations, simulations, and experiments confirm the theoretical analysis of the subunit of EPT.

A Study on the 3-phase 13.2 kV Solid State Transformer for the DC Distribution (직류 배전망 연계를 위한 3상 13.2kV급 반도체 변압기 시스템에 대한 연구)

  • Jeong, Dong-Keun;Yun, Hyeok-Jin;Park, Si-Ho;Kim, Ho-Sung;Kim, Myoung-Ho;Ryu, Myung-Hyo;Baek, Ju-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.315-324
    • /
    • 2021
  • A solid state transformer (SST) that can interface an MVAC of three-phase 13.2 kV and a 1.5 kV DC distribution. SST consists of an AC/DC converter and a DC/DC converter with a high-frequency isolation transformer (HFIT). The AC/DC converter consists of cascaded NPC full-bridge to cope with the MVAC. The DC/DC converter applies a quad active bridge (QAB) topology to reduce the number of the HFIT. Topology analysis and controller design for this specific structure are discussed. In addition, the insulation of HFIT used in DC/DC converters is considered. The discussion is validated using a 300 kVA three-phase SST prototype.