• Title/Summary/Keyword: HFC-134a

Search Result 113, Processing Time 0.024 seconds

Frictional Pressure Drop of a Capillary Tube Flow of Pure HFC Refrigerants and Their Mixtures (HFC 순수냉매 및 혼합냉매의 모세관내에서 마찰에 의한 압력강하)

  • Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.589-599
    • /
    • 1995
  • The frictional pressure drop of a capillary tube flow is experimentally investigated for pure refrigerants such as R32, R125, and R134a and refrigerant mixtures such as R32/R134a(30/70 by mass percent), R32/R125(60/40), R125/R134a(30/70), and R32/R125/R134a(23/25/52). The binary interaction parameters for the calculation of viscosities of refrigerant mixtures are found based upon the data in the open literature. Several homogeneous flow models predicting the viscosity of two-phase region are compared to select the best model. Cicchitti's equation is known to be the most adequate for the prediction of the viscosity for refrigerant mixtures, which is used in the analysis of adiabatic capillary flows. A model for the prediction of the frictional pressure drop of single and two-phase flow is developed for refrigerant mixtures in this study. This model may be used to design and analyze the performance of a capillary tube in the refrigerating system.

  • PDF

The Performance Analysis of the Fin-Tube Heat Exchanger Using CFC Alternative Refrigerant (CFC 대체냉매를 사용한 핀-관 열교환기의 성능해석)

  • 박희용;박경우;차재병
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2358-2372
    • /
    • 1993
  • In this study, the computer modeling for prediction of the performance of fin-tube heat exchanger using alternative refrigerant, HFC-134a was developed and the computer program for calculating the various properties of HFC-134a and the existing refrigerant CFC-12 and HCFC-22 was made. The heat exchanger modeling is based on a tube-by-tube approach, which is capable of analysis for the complex coil array. Performance of each tube is analyzed separately by considering the cross-flow heat transfer with external airstream and the appropriate heat and mass transfer relationships. A performance comparison according to the different refrigerants is provided using this developed model. As the result of this study, total heat transfer rate of evaporator and condenser using HFC-134a were found higher than that of using CFC-12 for the same operating conditions. When the mass flow rate of HFC-134a was less than CFC-12 about 18. 16%, the cooling capacities of evaporator were found to be the same.

Alternative Refrigerant and Oil for Hermetic Refrigerant Compressors (냉동공조용 밀폐형 압축기의 대체냉매와 냉동기유)

  • 강태욱
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.2
    • /
    • pp.23-27
    • /
    • 2001
  • Until 1996, CFC refrigerants haven't been used because it destroyed ozone that affecting In ecosystem. And HCFC will prohibit until 2020. In Europe, they attempt to move up its fulfillment. Until now the change have completed CFC into HFC134a and is considerated HCFC into HFC410A and HFC407C. But HFC41 OA has high condenser temperature and HFC407C is non-azeotropic refrigerant mixture and gliding temperature phenomenon. New refrigerant ell POE, PVE, PAG was also developed.

  • PDF

External Condensation Heat Transfer Coefficients of Refrigerant Mixtures on a Smooth Tube

  • An, Kwang-Yong;Cho, Young-Mok;Seo, Kang-Tae;Jung, Dong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • In this study, condensation heat transfer coefficients (HTCs) of nonazeotropic refrigerant mixtures of HFC32/HFC 134a and HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lowed than the ideal values calculated by the mass fraction weighting of the HTCs of the pure components. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against thc predicted ones by Colburn and Drew's film model and a good agreement was observed within a deviation of 15%.

  • PDF

Performance Analysis of a Centrifugal Compressor for HFC-134a with Variation of Diffuser Vane Angle (디퓨저 베인 설치각 변화에 따른 R134a 원심압축기 성능 분석)

  • Park, Han-Young;Shin, You-Hwan;Lee, Yoon-Pyo;Kim, Kwang-Ho;Chung, Jin-Taek;Cho, Yong-Hun;Kim, Jong-Seong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2823-2828
    • /
    • 2007
  • Numerical simulation on the two-stage centrifugal compressor with Low Solidity Vaned Diffuser LSVD) for HFC-134a Turbo-chiller was performed using a commercial code. The comparative study with experimental results from other compressor was also investigated to testify the simulation schemes. The numerical analysis was separately simulated for each stage of the compressor and the effect of impeller-diffuser flow interaction was considered. Setting angle of the diffuser vane changed in the range of 15 deg. and the effects on its variation were discussed in detail including the flow analysis in the passage of the compressor. The vane setting angle obtained from the preliminary design was slightly adjusted to the optimal value by the performance enhancement in terms of pressure recovery and flow characteristics.

  • PDF

Optimum Design Scheme of Receiver Dryer in an Automotive Air-Conditioning System using HFC-134a Refrigerant (신냉매용 자동차 에어콘 시스템에서의 건조기 설계에 관한 연구(온도감응식 팽창밸브의 개도에 따른))

  • 송유호;김령훈;송영길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.187-195
    • /
    • 1996
  • Because an alternative refrigerant(HFC-134a) is being used instead of CFC-12 for automotive air-conditioning system, newly designed air-conditioning components are necessary due to changes in characteristics. Optimum design scheme for receiver dryer in an automotive air-conditioning system is described with emphases upon the volume of desiccant and container. The volume of the container, that is manufactured based on the study, is reduced down to one half of the existing receiver dryers.

  • PDF

Study on Hydrate Formation and Dissociation Characteristics Observation by Change of HFCs & $N_2$ Mixture (HFCs & $N_2$ 혼합가스의 조성변화에 따른 Hydrate 형성/해리 특성 관찰에 관한 연구)

  • Shin, Hyung-Joon;Moon, Dong-Hyun;Kim, Young-Seok;Seo, Yong-Won;Lee, Gang-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.716-719
    • /
    • 2009
  • HFC-134a 의 농도별(99.9%, 80%, 50%, $N_2$ balance)로 하이드레이트의 결정생성/해리 특성을 연구하였다. HFC-134a 하이드레이트는 기/액 경계면에서만 수지상 형태의 하이드레이트 결정이 생성되었으며 수용액 내의 하이드레이트 결정관찰을 위해 물리적인 방법을 이용하였다. HFC-134a 농도가 낮을수록 하이드레이트 결정생성 속도가 둔화되었으며 특히 $N_2$의 함량이 50% 이상일 경우 $N_2$가 확연히 inhibitor 역할을 하였다. 하이드레이트 해리 시에는 기/액 경계면과 수용액 내부에서 매우 다른 양상이 관찰되었으며 하이드레이트 결정이 분해되면서 동공 속에 포집되었던 가스가 방출되는 것을 확인하였다.

  • PDF

Determination of trace impurities of HFC-134a by gas chromatograph with atomic emission detector (GC/AED) (GC/AED를 이용한 HFC-134a의 미량 불순물 분석)

  • Kim, Myeongja;Lim, Jeongsik;Lee, Jinbok;Lee, Jeongsoon
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.240-251
    • /
    • 2017
  • 1,1,1,2-Tetrafluoroethane (HFC-134a), which is used as refrigerant in air conditioners, has been recently regulated as a greenhouse gas and is recommended for reuse by refining. It is very important to quantitatively analyze trace impurities present in the refrigerant to evaluate the criteria for reuse. In this study, trace impurities including C, H, Cl, and F, which are difficult to quantify because there are no reference materials, were quantitatively analyzed by a gas chromatograph-atomic emission detector (GC/AED); for this analysis, this was preceded by a qualitative analysis with a GC-mass selective detector (GC/MSD). In addition, the AED response was investigated using a hydrocarbon mixed reference material, which was proportional to the number of atoms in the component. Fifteen refrigerant components were detected as trace impurities in HFC-134a by qualitative analysis of trace impurities including C, H, Cl, and F in the samples. Based on the results of the qualitative analysis, quantitative analysis of trace impurities using AED showed that the highest mole fractions were for the $CHClF_2$ component ($45438.38{\mu}mol/mol$) in one sample and for the $C_2H_2ClF_3$ component ($1311.47{\mu}mol/mol$) in another sample. From this study, it has been shown that it is possible for this analytical method to be applied to the qualitative and quantitative analysis of trace compounds in refrigerants, which are difficult to quantify because of the absence of reference materials.