• Title/Summary/Keyword: HEVC Intra CodingS

Search Result 5, Processing Time 0.016 seconds

Residual DPCM in HEVC Transform Skip Mode for Screen Content Coding

  • Han, Chan-Hee;Lee, Si-Woong;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.323-326
    • /
    • 2016
  • High Efficiency Video Coding (HEVC) adopts intra transform skip mode, in which a residual block is directly quantized in the pixel domain without transforming the block into the frequency domain. Intra transform skip mode provides a significant coding gain for screen content. However, when intra-prediction errors are not transformed, the errors are often correlated along the intra-prediction direction. This paper introduces a residual differential pulse code modulation (DPCM) method for the intra-predicted and transform-skipped blocks to remove redundancy. The proposed method performs pixel-by-pixel residual prediction along the intra-prediction direction to reduce the dynamic range of intra-prediction errors. Experimental results show that the transform skip mode's Bjøntegaard delta rate (BD-rate) is improved by 12.8% for vertically intra-predicted blocks. Overall, the proposed method shows an average 1.2% reduction in BD-rate, relative to HEVC, with negligible computational complexity.

Performance Analysis of Future Video Coding (FVC) Standard Technology

  • Choi, Young-Ju;Kim, Ji-Hae;Lee, Jong-Hyeok;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2017
  • The Future Video Coding (FVC) is a new state of the art video compression standard that is going to standardize, as the next generation of High Efficiency Video Coding (HEVC) standard. The FVC standard applies newly designed block structure, which is called quadtree plus binary tree (QTBT) to improve the coding efficiency. Also, intra and inter prediction parts were changed to improve the coding performance when comparing to the previous coding standard such as HEVC and H.264/AVC. Experimental results shows that we are able to achieve the average BD-rate reduction of 25.46%, 38.00% and 35.78% for Y, U and V, respectively. In terms of complexity, the FVC takes about 14 times longer than the consumed time of HEVC encoder.

Moment-based Fast CU Size Decision Algorithm for HEVC Intra Coding (HEVC 인트라 코딩을 위한 모멘트 기반 고속 CU크기 결정 방법)

  • Kim, Yu-Seon;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.514-521
    • /
    • 2016
  • The High Efficiency Video Coding (HEVC) standard provides superior coding efficiency by utilizing highly flexible block structure and more diverse coding modes. However, rate-distortion optimization (RDO) process for the decision of optimal block size and prediction mode requires excessive computational complexity. To alleviate the computation load, this paper proposes a new moment-based fast CU size decision algorithm for intra coding in HEVC. In the proposed method, moment values are computed in each CU block to estimate the texture complexity of the block from which the decision on an additional CU splitting procedure is performed. Unlike conventional methods which are mostly variance-based approaches, the proposed method incorporates the third-order moments of the CU block in the design of the fast CU size decision algorithm, which enables an elaborate classification of CU types and thus improves the RD-performance of the fast algorithm. Experimental results show that the proposed method saves 32% encoding time with 1.1% increase of BD-rate compared to HM-10.0, and 4.2% decrease of BD-rate compared to the conventional variance-based fast algorithm.

Fast PU Decision Method Using Coding Information of Co-Located Sub-CU in Upper Depth for HEVC (상위깊이의 Sub-CU 부호화 정보를 이용한 HEVC의 고속 PU 결정 기법)

  • Jang, Jae-Kyu;Choi, Ho-Youl;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.340-347
    • /
    • 2015
  • HEVC (High Efficiency Video Coding) achieves high coding efficiency by employing a quadtree-based coding unit (CU) block partitioning structure and various prediction units (PUs), and the determination of the best CU partition structure and the best PU mode based on rate-distortion (R-D) cost. However, the computation complexity of encoding also dramatically increases. In this paper, to reduce such encoding computational complexity, we propose three fast PU mode decision methods based on encoding information of upper depth as follows. In the first method, the search of PU mode of the current CU is early terminated based on the sub-CBF (Coded Block Flag) of upper depth. In the second method, the search of intra prediction modes of PU in the current CU is skipped based on the sub-Intra R-D cost of upper depth. In the last method, the search of intra prediction modes of PU in the lower depth's CUs is skipped based on the sub-CBF of the current depth's CU. Experimental results show that the three proposed methods reduce the computational complexity of HM 14.0 to 31.4%, 2.5%, and 23.4% with BD-rate increase of 1.2%, 0.11%, and 0.9%, respectively. The three methods can be applied in a combined way to be applied to both of inter prediction and intra prediction, which results in the complexity reduction of 34.2% with 1.9% BD-rate increase.

Two-Step Rate Distortion Optimization Algorithm for High Efficiency Video Coding

  • Goswami, Kalyan;Lee, Dae Yeol;Kim, Jongho;Jeong, Seyoon;Kim, Hui Yong;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.311-316
    • /
    • 2017
  • High Efficiency Video Coding (HEVC) is the newest video coding standard for improvement in video data compression. This new standard provides a significant improvement in picture quality, especially for high-resolution videos. A quadtree-based structure is created for the encoding and decoding processes and the rate-distortion (RD) cost is calculated for all possible dimensions of coding units in the quadtree. To get the best combination of the block an optimization process is performed in the encoder, called rate distortion optimization (RDO). In this work we are proposing a novel approach to enhance the overall RDO process of HEVC encoder. The proposed algorithm is performed in two steps. In the first step, like HEVC, it performs general rate distortion optimization. The second step is an extra checking where a SSIM based cost is evaluated. Moreover, a fast SSIM (FSSIM) calculation technique is also proposed in this paper.