• Title/Summary/Keyword: HEVC 인트라 코딩

Search Result 10, Processing Time 0.021 seconds

Secondary Residual Transform for Lossless Intra Coding in HEVC (제 2차 잔차 변환을 이용한 HEVC 무손실 인트라 코딩)

  • Kwak, Jae-Hee;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.734-741
    • /
    • 2012
  • A new lossless intra coding method based on residual transform is applied to the next generation video coding standard HEVC (High Efficiency Video Coding). HEVC includes a multi-directional spatial prediction method to reduce spatial redundancy by using neighboring samples as a prediction for the samples in a block of data to be encoded. In the new lossless intra coding method, the spatial prediction is performed as samplewise DPCM (Difference Pulse Code Modulation) but is implemented as block-based manner by using residual transform and secondary residual transform on the HEVC standard. Experimental results show that the new lossless intra coding method reduces the bit rate by approximately 6.45% in comparison with the lossless intra coding method previously included in the HEVC standard.

The algorithm for unusal phenamenan occurred in PU ino Intra-Frame of HEVC (HEVC 인트라프레임에서 PU의 특이한 경향성을 발견하기 위한 알고리즘)

  • Kim, Bo Ra;Seo, Young Ho;Kim, Dong Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.206-207
    • /
    • 2014
  • 본 논문에서는 HEVC의 인트라 프레임을 대상으로 디지털 워터마킹 방법을 목표로 하여 인트라 예측 시 첫 번째 인코딩과 두 번째 인코딩에서 변화하는 PU의 경향성 중 특이한 케이스를 선별하는 방법을 제안하고자 한다. 코덱에서 워터마킹시 문제가 되는 것이 재인코딩시 예측모드의 변화이다. 그렇기에 HEVC를 기반으로 예측모드는 같으나 PU의 크기가 달라지는 경우가 있는데, 이를 선별하는 것을 통해 HEVC기반 디지털 워터마킹을 새로운 방향으로 이끌 수 있을 것으로 판단된다.

  • PDF

Moment-based Fast CU Size Decision Algorithm for HEVC Intra Coding (HEVC 인트라 코딩을 위한 모멘트 기반 고속 CU크기 결정 방법)

  • Kim, Yu-Seon;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.514-521
    • /
    • 2016
  • The High Efficiency Video Coding (HEVC) standard provides superior coding efficiency by utilizing highly flexible block structure and more diverse coding modes. However, rate-distortion optimization (RDO) process for the decision of optimal block size and prediction mode requires excessive computational complexity. To alleviate the computation load, this paper proposes a new moment-based fast CU size decision algorithm for intra coding in HEVC. In the proposed method, moment values are computed in each CU block to estimate the texture complexity of the block from which the decision on an additional CU splitting procedure is performed. Unlike conventional methods which are mostly variance-based approaches, the proposed method incorporates the third-order moments of the CU block in the design of the fast CU size decision algorithm, which enables an elaborate classification of CU types and thus improves the RD-performance of the fast algorithm. Experimental results show that the proposed method saves 32% encoding time with 1.1% increase of BD-rate compared to HM-10.0, and 4.2% decrease of BD-rate compared to the conventional variance-based fast algorithm.

CR-DPCM for Lossless Intra Prediction Method in HEVC (CR-DPCM을 이용한 HEVC 무손실 인트라 예측 방법)

  • Hong, Sung-Wook;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.307-315
    • /
    • 2014
  • A new modified lossless intra-coding method based on a cross residual transform is applied to HEVC(High Efficiency Video Coding). The HEVC standard including a multi-directional spatial prediction method to reduce spatial redundancy encodes the pixels in a PU (Prediction Unit) by using neighboring pixels. In the new modified lossless intra-coding method, the spatial prediction is performed by pixel-based DPCM but is implemented by block-based manner by using cross residual transform on the HEVC standard. The experimental results show that the new lossless intra-coding method reduces the bit rate of approximately 8.4% in comparison with the lossless-intra coding method in the HEVC standard and the proposed method results in slightly better compression ratio than the JPEG2000 lossless coding.

A Fast Intra Prediction Method Using Quadtree Structure and SATD in HEVC Encoder (쿼드트리 구조와 SATD를 이용한 HEVC 인코더의 고속 인트라 예측 방식)

  • Kim, Youngjo;Kim, Jaeseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.129-138
    • /
    • 2014
  • This paper proposes a fast intra prediction method to reduce encoding time for the HEVC(high-efficiency video coding) encoder. The proposed fast Intra prediction method uses quadtree structure and SATD(Sum of Absolute Transformed Differences). In HEVC, a $8{\times}8$ SATD value using $8{\times}8$ hadamard transform is used to calculate a SATD value for $8{\times}8$ or larger blocks. The proposed method calculates the best SATD value by using each $8{\times}8$ SATD result in $16{\times}16$ or larger blocks. After that, the proposed method removes a candidate mode for RDO(Rate-Distortion Optimization) based on comparing SATD of the candidate mode and the best SATD. By removing candidate modes, the proposed method reduces the operation of RDO and reduces total encoding time. In $8{\times}8$ block, the proposed method uses additional $4{\times}4$ SATD to calculat the best SATD. The experimental results show that the proposed method achieved 5.08% reduction in encoding time compared to the HEVC test model 12.1 encoder with almost no loss in compression performance.

Analysis of Intra Prediction for Digital Watermarking based on HEVC (HEVC기반의 디지털 워터마킹을 위한 인트라 예측의 분석)

  • Seo, Young-Ho;Kim, Bora;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1189-1198
    • /
    • 2015
  • Recently, with rapid development of digital broadcasting technology, high-definition video service increased interest and demand. supplied mobile and image device support that improve 4~16 time existing Full HD. Such as high-definition contents supply, proposed compression for high-efficiency video codec (HEVC). Therefore, watermarking technology is necessary applying HEVC for protecting ownership and intellectual property. In this paper, analysis of prediction mode in intra frame and study feasibility of watermarking in re-encoding based HEVC. Proposed detect un-changed blocks in intra frame, using the result of analysis prediction mode.

Fast Intra Coding using DCT Coefficients (DCT 계수를 이용한 고속 인트라 코딩)

  • Kim, Ga-Ram;Kim, Nam-Uk;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.862-870
    • /
    • 2015
  • The RDO (Rate Distortion Optimization) process of HEVC results in good coding efficiency, but relatively requires much encoding time. In order to reduce the encoding time of RDO process, this paper proposes a method of fast intra prediction mode decision using DCT coefficients distributions and the existence of DCT coefficients. The proposed fast Intra coding sets the number of intra prediction mode candidates to three(3) from the RMD (Rough Mode Decision) process in HM16.0 reference SW and reduces the number of candidates one more time by investigating DCT coefficients distribution. After that, if there exists a quantized DCT block having all zero coefficient values for a specific candidate before the RDO process, the candidate is chosen without the RDO process. The proposed method reduces the encoder complexity on average 46%, while the coding efficiency is 2.1% decreased compared with the HEVC encoder.

Texture-based Early Decision of Block Sizes for the Complexity Reduction of HEVC Intra-Encoding in the Mobile Environment (모바일 환경에서 HEVC 인트라 인코딩의 계산 복잡도 감소를 위한 영상 특성 기반의 블록 후보 조기 결정 방법)

  • Park, Seung-Won;Rhee, Chae Eun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Compared to the former H.264 standard, the number of the prediction modes has highly increased in HEVC intra prediction. Compression efficiency and accurate prediction are significantly improved. However, the computational complexity increases as well. To solve this problem, this paper proposes the new scheme where not only prediction modes but also block partition candidate are early chosen. Compared to the original intra prediction in HEVC, the proposed scheme achieves about 38% reduction in processing cycles with a marginal loss in compression efficiency.

Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder (하드웨어 기반 HEVC 인트라 인코더에서 다운 샘플링을 사용한 고속 Rough Mode Decision)

  • Jang, Ji Hun;Rhee, Chae Eun
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • HEVC is the next compression standard and is expected to be used widely replacing the conventional H.264/AVC standard. The compression ratio of the HEVC is twice times than H.264/AVC, whereas its computational complexity is increased by up to 40%. Many research efforts have been made to reduce the computational complexity and to speed up encoding. For intra coding, the rough mode decision (RMD) is commonly applied. The rate-distortion optimization (RDO) process to decide the best mode is too complex so that RMD chooses the candidate modes with a simple process and sends the candidates to RDO process. However, for large-size blocks, the RMD also requires considerable computations. In this paper, a down-sampling scheme is proposed for the RMD process. The reference pixel loading, predicted pixel generation are performed using the down-sampled pixel data. When the proposed scheme is applied to the RMD, the computational complexity is reduced by 70% with a marginal bitrate increase of 0.04%. In terms of area of hardware-based RMD, the gate count and the buffer size is reduced 33% and 66%, respectively.

An improved RDO algorithm for the HEVC intra encoder (HEVC 인트라 인코더를 위한 RDO 알고리듬의 개선)

  • Won, Eui-Yeon;Chae, Soo-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.123-126
    • /
    • 2013
  • High Efficiency Video Coding 비디오 표준은 다양한 분할방식 및 35가지 예측모드를 허용하기 때문에 최적의 분할 및 예측모드를 결정하기 위한 연산량이 많다. 이를 줄이기 위하여 본 논문에서는 CU분할의 결정에 있어 가설검정을 이용하여 early splitting 및 early pruning을 위한 임계값을 설정하고, early splitting의 경우 연산의 결과값이 임계값보다 클 경우, early pruning의 경우 연산의 결과값보다 임계값보다 작을 경우 CU의 분할을 조기에 결정하는 논문[1]의 방법을 차용하여 CU의 분할을 조기에 결정하며, 추가로 비트율 및 왜곡을 연산하는 예측모드의 개수를 줄임으로써 인코더의 성능을 향상시켰다. 또한 예측모드를 결정할 때 RDOQ를 수행하지 않음으로써 예측모드를 빠르게 결정하며, TU의 분할에 있어서도 CBF의 값 및 임계값을 이용한 early pruning 방법을 수행하여 인코더의 성능을 향상시켰다. 실험결과 5.9%의 luma BDRate의 증가가 있었으나, 63.7%의 인코딩 시간이 절감되었다.

  • PDF