• 제목/요약/키워드: HEK 293

검색결과 271건 처리시간 0.025초

Transcriptional Activity of an Estrogen Receptor β Subtype in the Medaka Oryzias dancena

  • Maeng, Sejung;Yoon, Sung Woo;Kim, Eun Jeong;Nam, Yoon Kwon;Sohn, Young Chang
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권4호
    • /
    • pp.333-344
    • /
    • 2019
  • In vertebrate reproductive system, estrogen receptor (ER) plays a pivotal role in mediation of estrogenic signaling pathways. In the present study, we report the cDNA cloning, expression analysis, and transcriptional activity of ERβ1 subtype from medaka Oryzias dancena. The deduced O. dancena ERβ1 (odERβ1; 519 amino acids) contained six characteristic A/B to E/F domains with very short activation function 2 region (called AF2). A phylogenetic analysis indicated that odERβ1 was highly conserved among teleost ERβ1 subgroup. A conventional RT-PCR revealed that the odERβ1 transcripts were widely distributed in the multiple tissues, the ovary, brain, gill, intestine, kidney, and muscle. Further, the relatively higher odERβ1 expressions in the ovary and brain were clearly reproduced in RT-qPCR assay. When HA-fused odERβ1 expression vector was transfected into HEK293 cells, an immunoreactivity for odERβ1 was mainly detected in the nucleus part. Finally, an estrogen responsive element driven luciferase reporter assays demonstrated that the transcriptional activity of odERβ1 significantly increased by estradiol-17β (E2) in a dose dependent manner (p<0.05). However, fold-activation of odERβ1 in the presence of E2 was markedly weak, when it compared with those of O. latipes ERβ1. Taken together, these data suggest that odERβ1 represents a functional variant of teleost ERβ subtype and provides a basic tool allowing future studies examining the function of F domain of ERβ1 subtype and expanding our knowledge of ERβ evolution.

Gardenia jasminoides extract and its constituent, genipin, inhibit activation of CD3/CD28 co-stimulated CD4+ T cells via ORAI1 channel

  • Kim, Hyun Jong;Nam, Yu Ran;Woo, JooHan;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권4호
    • /
    • pp.363-372
    • /
    • 2020
  • Gardenia jasminoides (GJ) is a widely used herbal medicine with anti-inflammatory properties, but its effects on the ORAI1 channel, which is important in generating intracellular calcium signaling for T cell activation, remain unknown. In this study, we investigated whether 70% ethanolic GJ extract (GJEtOH) and its subsequent fractions inhibit ORAI1 and determined which constituents contributed to this effect. Whole-cell patch clamp analysis revealed that GJEtOH (64.7% ± 3.83% inhibition at 0.1 mg/ml) and all its fractions showed inhibitory effects on the ORAI1 channel. Among the GJ fractions, the hexane fraction (GJHEX, 66.8% ± 9.95% at 0.1 mg/ml) had the most potent inhibitory effects in hORAI1-hSTIM1 co-transfected HEK293T cells. Chemical constituent analysis revealed that the strong ORAI1 inhibitory effect of GJHEX was due to linoleic acid, and in other fractions, we found that genipin inhibited ORAI1. Genipin significantly inhibited IORAI1 and interleukin-2 production in CD3/CD28-stimulated Jurkat T lymphocytes by 35.9% ± 3.02% and 54.7% ± 1.32% at 30 μM, respectively. Furthermore, the same genipin concentration inhibited the proliferation of human primary CD4+ T lymphocytes stimulated with CD3/CD28 antibodies by 54.9% ± 8.22%, as evaluated by carboxyfluorescein succinimidyl ester assay. Our findings suggest that genipin may be one of the active components of GJ responsible for T cell suppression, which is partially mediated by activation of the ORAI1 channel. This study helps us understand the mechanisms of GJ in the treatment of inflammatory diseases.

Functional characterization of $P_{2X}/P_{2Y}$ receptor in isolated swine renal artery

  • Kim, Joo-heon;Jeon, Je-cheol;Lee, Sang-kil;Lee, Su-jin;Lee, Younggeon;Won, Jinyoung;Kang, Jae seon;Hong, Yonggeun
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.371-378
    • /
    • 2007
  • To understand the role of $PM_{2X}/P_{2Y}$ receptor in cortex region of kidney and renal artery, molecular and functional analysis of $PM_{2X}/P_{2Y}$ receptor by pharmacophysiological skill in conventional swine tissues were performed. In functional analysis of $P_{2Y}$ receptor for vascular relaxation, 2-methylthio adenosine triphosphate, a strong agonist of $P_{2Y}$ receptor, induced relaxation of noradrenaline (NA)-precontracted renal artery in a dose-dependent manner. Strikingly, relaxative effect of ATP, 2-msATP, agonists of $P_{2Y}$ receptor, abolished by treatment of reactive blue 2, a putative $P_{2Y}$ receptor antagonist. In contrast, no significant differences of gene encoding $PM_{2X}/P_{2Y}$ and protein expression in immortalized suprachiasmatic nucleus from brain, primary isolated vascular smooth muscle cells from renal artery of pigs and HEK293 from human embryonic kidney under with/without adenosine triphosphate were observed. Taken together, the relationship between molecular and functional characteristic of $PM_{2X}/P_{2Y}$ receptors in conventional pig should be considered that they are another important factor which regulate the kidney function in swine. Based on this study, we propose the purinergic receptor as well as adrenergic and cholinergic receptors is an essential component of the renal homeostasis.

N-Acetyl-D-Glucosamine Kinase Is a Component of Nuclear Speckles and Paraspeckles

  • Sharif, Syeda Ridita;Lee, HyunSook;Islam, Md. Ariful;Seog, Dae-Hyun;Moon, Il Soo
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.402-408
    • /
    • 2015
  • Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.

N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division

  • Sharif, Syeda Ridita;Islam, Md. Ariful;Moon, Il Soo
    • Molecules and Cells
    • /
    • 제39권9호
    • /
    • pp.669-679
    • /
    • 2016
  • N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.

Ricinus communis extract inhibits the adipocyte differentiation through activating the Wnt/β-catenin signaling pathway

  • Kim, Bora;Kim, Hyun-Soo
    • 한국식품저장유통학회지
    • /
    • 제24권4호
    • /
    • pp.524-528
    • /
    • 2017
  • Ricinus communis, belongs to the family Euphorbiaceae, has been known as medicinal plants for treatment of inflammation, tumors, antidiabetic, hepatoprotective and laxative. Compared to many pharmacological studies, the effect of R. communis extract on regulating adipogenesis as therapeutic drug for treating obesity has not been reported. R. communis extract (RCE) was investigated to determine its effects on the adipogenesis by monitoring the status of $Wnt/{\beta}-catenin$ signaling and factors involving the differentiation of adipocytes. The differentiation of 3T3-L1 cells monitored by Oil Red O staining was inhibited in concentration dependent manner by RCE. The luciferase activity of HEK 293-TOP cells containing pTOPFlash with Tcf4 response element-luciferase gene was increased approximately 2-folds by the treatment of RCE at concentrations of $100{\mu}g/mL$ compared to the control. Activation of the $Wnt/{\beta}-catenin$ pathway by RCE was further confirmed by immunocytochemical analysis which shows an increment of nuclear localization of ${\beta}-catenin$. In addition, safety of RCE was verified through performing neural stem cell morphology assay. Among the identified flavonoids in RCE, isoquercitrin was the most abundant. Therefore, these results indicate that the adipocyte differentiation was significantly reduced by isoquercitrin in R. communis. In this study, RCE suppresses the adipogenesis of 3T3-L1 cells via the activation of $Wnt/{\beta}-catenin$ signaling.

초고압 저온처리에 의한 매자나무의 면역 활성 (Effect of Immune Activity on Berberis koreana Palibin by Ultra High Pressure Low Temperature Process)

  • 김영;한재건;하지혜;정향숙;권민철;안주희;김진철;최근표;정을권;이현용
    • 한국약용작물학회지
    • /
    • 제16권6호
    • /
    • pp.439-445
    • /
    • 2008
  • This study was performed to investigate a methodology of improving immune activities of Berberis koreana Palibin by ultra high pressure on low temperature extraction process. Extraction yield was enhanced up to more than 35% by above process, compare to the control and extraction average. The cytotoxicity on human kidney cell (HEK293) was showed below 20.4%, 21.6% in adding 1.0 mg/ml of the highest concentration. Generally, the extracts by ultra high pressure extraction process showed less toxicity about 5% than the other processes. It could tell that toxic materials that existing in the plant could be reduced or broken by ultra high pressure process due to can be broken bond such the hydrogen bond, the electrostatic bond, the van der Waals bond, and the hydrophobic bond, can be broken by high pressure. The result could be employed to develop a new type of functional food from B. koreana Palibin by low temperature high pressure process.

Complexation of Adiponectin-encoding Plasmid DNA with Rosiglitazone-loaded Cationic Liposomes

  • Davaa, Enkhzaya;Jeong, Ui-Hyeon;Shin, Baek-Ki;Choi, Soon-Gil;Myung, Chang-Seon;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권6호
    • /
    • pp.357-362
    • /
    • 2010
  • To enhance therapeutic effects of insulin-sensitizing adipokine, ADN gene and potent agonists, rosiglitazone for the $PPAR{\gamma}$, cationic liposomes as non-viral vectors were formulated. The particle size and zeta potential of drug loaded and unloaded cationic liposomes were investigated. The complex formation between cationic liposomes and negatively charged plasmid DNA was confirmed and the protection from DNase was observed. In vitro transfection was investigated in HepG2, HeLa, and HEK293 cells by mRNA expression of ADN. Encapsulation efficacy of rosiglitazone-loaded liposomes was determined by UV detection. Particle sizes of cationic liposomes were in the range of 110-170 nm and those of rosiglitazone-loaded cationic liposomes were in the range of 130-180 nm, respectively. Gel retardation of complexes indicated that the complex was formed at weight ratios of cationic lipid to plasmid DNA higher than 20:1. Both complexes protected plasmid DNA from DNase either drug free or drug loading. Encapsulation efficiency of rosiglitazone-loaded emulsion was increased by drug dose. The mRNA expression levels of ADN were dose-dependently increased in cells transfected with plasmid DNA. Therefore, cationic liposomes could be potential co-delivery system for drug and gene.

Trichostatin A Modulates Angiotensin II-induced Vasoconstriction and Blood Pressure Via Inhibition of p66shc Activation

  • Kang, Gun;Lee, Yu Ran;Joo, Hee Kyoung;Park, Myoung Soo;Kim, Cuk-Seong;Choi, Sunga;Jeon, ByeongHwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.467-472
    • /
    • 2015
  • Histone deacetylase (HDAC) has been recognized as a potentially useful therapeutic target for cardiovascular disorders. However, the effect of the HDAC inhibitor, trichostatin A (TSA), on vasoreactivity and hypertension remains unknown. We performed aortic coarctation at the inter-renal level in rats in order to create a hypertensive rat model. Hypertension induced by abdominal aortic coarctation was significantly suppressed by chronic treatment with TSA (0.5 mg/kg/day for 7 days). Nicotinamide adenine dinucleotide phosphate-driven reactive oxygen species production was also reduced in the aortas of TSA-treated aortic coarctation rats. The vasoconstriction induced by angiotensin II (Ang II, 100 nM) was inhibited by TSA in both endothelium-intact and endothelium-denuded rat aortas, suggesting that TSA has mainly acted in vascular smooth muscle cells (VSMCs). In cultured rat aortic VSMCs, Ang II increased p66shc phosphorylation, which was inhibited by the Ang II receptor type I ($AT_1R$) inhibitor, valsartan ($10{\mu}M$), but not by the $AT_2R$ inhibitor, PD123319. TSA ($1{\sim}10{\mu}M$) inhibited Ang II-induced p66shc phosphorylation in VSMCs and in HEK293T cells expressing $AT_1R$. Taken together, these results suggest that TSA treatment inhibited vasoconstriction and hypertension via inhibition of Ang II-induced phosphorylation of p66shc through $AT_1R$.

Ginsenoside F1 Modulates Cellular Responses of Skin Melanoma Cells

  • Yoo, Dae-Sung;Rho, Ho-Sik;Lee, Yong-Gyu;Yeom, Myung-Hun;Kim, Duck-Hee;Lee, Sang-Jin;Hong, Sung-Youl;Lee, Jae-Hwi;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.86-91
    • /
    • 2011
  • Ginsenoside (G)-F1 is an enzymatic metabolite generated from G-Rg1. Although this metabolite has been reported to suppress platelet aggregation and to reduce gap junction-mediated intercellular communication, the modulatory activity of G-F1 on the functional role of skin-derived cells has not yet been elucidated. In this study, we evaluated the regulatory role of G-F1 on the cellular responses of B16 melanoma cells. G-F1 strongly suppressed the proliferation of B16 cells up to 60% at 200 ${\mu}g/mL$, while only diminishing the viability of HEK293 cells up to 30%. Furthermore, G-F1 remarkably induced morphological change and clustering of B16 melanoma cells. The melanin production of B16 cells was also significantly blocked by G-F1 up to 70%. Interestingly, intracellular signaling events involved in cell proliferation, migration, and morphological change were up-regulated at 1 h incubation but down-regulated at 12 h. Therefore, our results suggest that G-F1 can be applied as a novel anti-skin cancer drug with anti-proliferative and anti-migration features.