• Title/Summary/Keyword: HEC-HMS Model

Search Result 103, Processing Time 0.031 seconds

Flood Runoff Computation for Mountainous Small Basins using HEC-HMS Model (HEC-HMS 모델을 이용한 산지 소하천유역의 홍수유출량 산정)

  • Chang, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • The objective of this study is to propose a methodology of the flood runoff analysis in steep mountainous basins and the analysis basin is the Jasa valley basin in Chungju city Analyzing the spatial pattern of the rainfall in 1994. 6 30~7.1, the seasonal rainy front was tied up in the whole central district, and the rainfall center was moving from the northern Chungbuk province to the northern Kyongbuk province and caused heavy storm. Analyzing the temporal pattern with the Huff method, the 52.5% of the rainfall was concentrated on the 3rd quartile. Rainfall frequency analysis is accomplished by five distribution types; 2-parameter Lognomal, 3-parameter Lognomal, Pearson Type III, Log-Pearson Type III and Extremal Type I distribution Rainfall-runoff analysis in Jasa valley basin was made using HEC-HMS model. Jasa valley basin was divided into 3 sub-basins and the analysis point was 3 points{A, B and C point) With the rainfall data measured by the 10 minutes, the flood runoff also was calculated by as many minutes. SCS CN model, Clark UH model and Muskingum routing model in HEC-HMS model were used to simulate the runoff volume using selected rainfall event.

  • PDF

Runoff Analysis of Kumho River Basin Using HEC-HMS (HEC-HMS를 이용한 금호강 유역의 유출분석)

  • Jung, Chan-Yong;Lim, Hyuk-Jin;Song, In-Ryeol;Lee, Jin-Won;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1078-1083
    • /
    • 2009
  • HEC-HMS(Hydrologic Modeling System)은 강우-유출 모의를 위한 차세대 소프트웨어이며 HEC-1에 포함되어 있는 단위도 및 수문학적 홍수추적 이외에도 격자형 강우자료(레이더 데이터)를 이용하여 적용할 수있는 유사분포 유출변화와 장기 연속모의에 적용할 수 있는 간단한 수분감소 등을 추가적으로 포함하고 있다. 또한 GUI(Graphical User Interface)환경, 통합 수문분석 성분, 자료 저장 및 관리 능력, 그래�d 처리 및리포트 출력기능으로 구성되어 있으며 여러 가지 프로그램 언어(C, C++, Fortran)를 이용하여 개발되었다. 본 연구에서는 낙동강 수계의 금호강에 위치한 동촌 지점을 유출구로 선정하고 5개의 소유역과 두 개의 하도로 구성하여 유출모의를 실시하였으며 수문자료 선정은 2007년$^{\sim}$2008년에 발생한 홍수사상과 유량조사 사업단에서 개발한 수위-유량관계곡선식을 활용하였다. 또한, HEC-GeoHMS 모형을 GIS와 연계하여 지형인자를 추출하고 추출된 지형인자를 이용하여 매개변수를 산정하였다. HEC-HMS 모형의 계산 조건에서 손실 우량은 SCS CN, 유출변환은 Clark 단위도법을 적용하였다. 또한 관측치와 계산치의 적합도 검증은 평균제곱 근오차(root mean squar error; RMSE)와 모형 효율성 계수(model efficiency; ME)를 산정하여 분석하였다

  • PDF

Rainfall Correction of Radar Image Data and Estimation Runoff of Urban Stream using Vflo (레이더 자료의 강우보정 및 Vflo를 활용한 도심하천의 홍수량 산정)

  • Kang, Bo-Seong;Yang, Sung-Kee;Kim, Yong-Seok
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.411-420
    • /
    • 2017
  • This research aims at comparing the accuracy of flood discharge estimation. For this, we focused on the Oedo watershed of Jeju Island and compared flood discharge by analyzing the values as follows: (1) the concentration of the lumped model (HEC-HMS) and distributed model (Vflo), and (2) the in-situ data using Fixed Surface Image Velocimetry (FSIV). The flood discharge estimation from the HEC-HMS model is slightly larger than the Vflo model results. This result shows that the estimations of the HEC-HMS are larger than the flood discharge data by 4.43 to 36.24% and that of the Vflo are larger by 8.49 to 11%. In terms of the error analysis at the peak discharge occurrence time of each mapping, HEC-HMS is one hour later than the measured data, but Vflo is almost the same as the measured data.

Determination of the Storage Constant for the Clark Model by based on the Observed Rainfall-Runoff Data (강우-유출 자료에 의한 Clark 모형의 저류상수 결정)

  • Ahn, Tae-Jin;Choi, Kwang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1454-1458
    • /
    • 2007
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage constant based on the observed rainfall-runoff data at the three stage stations in the Imjin river basin and the three stage stations in the Ansung river basin. In this study four methods have been proposed to estimate the storage constant from observed rainfall-runoff data. The HEC-HMS model has been adopted to execute the sensitivity of storage constant. A criteria has been proposed to determine storage constant based on the results of the observed hydrograph and the HEC-HMS model.

  • PDF

Application of Hydrological Monitoring System for Urban Flood Disaster Prevention (도시홍수방재를 위한 수문모니터링시스템의 적용)

  • Seo, Kyu-Woo;Na, Hyun-Woo;Kim, Nam-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF

Analyis of stormwater and runoff characteristics in Anseongcun basin using HEC-HMS (HEC-HMS을 이용한 안성천 유역의 강우 유출 특성 분석)

  • Hwang, Byung-Gi;Yang, Seung-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • The HEC-HMS model was applied to identify the rainfall-runoff processes for the Anseongchun basin, where the lower part of the stream has been damaged severely by tropical storms in the past. Modeling processes include incorporating with the SCS-CN model for loss, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated through an optimization technique using a trial and error method. Sensitivity analysis after calibration was performed to understand the effects of parameters, such as the time of concentration, storage coefficient, and base flow related constants. Two storm water events were simulated by the model and compared with the corresponding observations. Good accuracy in predicting the runoff volume, peak flow, and the time to peak flow was achieved using the selected methods. The results of this study can be used as a useful tool for decision makers to determine a master plan for regional flood control management.

Evaluation of Flood-Damage Reduction Alternatives Using HEC-HMS (HEC-HMS 모형을 이용한 홍수피해 저감대안 평가)

  • Seong, Choung-Hyun;Park, Seung-Woo;Kim, Sang-Min
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.483-486
    • /
    • 2003
  • This paper presents how effective the detention storage is to control floods at a test watershed. HEC-HMS model was applied to simulate the effects of the storages of different levels and installation methods on the flood peak reduction. The results showed that the detention storage may significant reduce the flood peaks, and the effectiveness depends on the sizes of the storage and types of installation. The simulated peak values reduce considerably for the design storm events. The results also showed that alternatives to control flood may be evaluated using the model.

  • PDF

Application of QuickBird Satellite Image to Storm Runoff Modeling

  • Kim, Sang-Ho;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • This study is to apply QuickBird satellite image for the simulation of storm runoff in a small rural watershed. For a $1.05km^2$ watershed located in Goesan-Gun of Chungbuk Province, the land use from the QuickBird image was produced by on-screening digitising after ortho-rectifying using 2 m DEM. For 3 cases of land use, soil and elevation scale (1:5,000, 1:25,000 and 1:50,000), SCS-CN and the watershed physical parameters were prepared for the storm runoff model, HEC-HMS (Hydrologic Modelling System). The model was evaluated for each case and compared the simulated results with couple of selected storm events.

Comparative Assessment of the Conceptual Rainfall Runoff model and HEC-HMS in the Jeungpyeong catchment (증평유역의 개념적 강우-유출모형과 HEC-HMS모형 비교 평가)

  • Park, Ki-Soon;Lee, Hyo-Sang;Lee, Moo-Kyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.977-977
    • /
    • 2012
  • 하천의 유량 측정은 대부분 홍수 예보지역, 댐 상류지역, 대하천 및 유역내 주요지점을 위주로 수행되고 있으나, 중소하천과 소유역에 대한 관측자료는 전무한 실정이다. 그로 인해 중소하천과 소유역 등 미계측 유역에 대한 유량 산정에 어려움이 있다. 본 연구에서는 미계측 유역에 대한 적합한 유량 산정방법의 검토를 위해 미호천의 소유역인 증평유역을 대상으로 9개의 개념적 강우-유출모형(3개의 토양저류모형과 3개의 유역유출모형의 조합)을 적용하였으며, 이에 대한 적용성 검토를 위해 국내 홍수량산정에 많이 활용되고 있는 HEC-HMS 모형으로 비교평가를 실시하였다. 이를 위하여 총 6개의 단기 홍수사상을 Monte Carlo 분석(Nash Sutcliffe Efficiency, NSE*)의 목적함수를 통하여 모형 매개변수의 검정 및 검증을 수행하였다. 두 모형의 단기 유출 모의 결과 검정에서 HEC-HMS는 목적함수값 0.06~1.44(NE S*)의 모형성능을 보여주었으며, 개념적 강우-유출 모형은 0.00~0.66(NES*)의 모형성능을 나타내었다. 개념적 강우-유출 모형과 HEC-HMS모형의 매개변수 최적화를 통한 검증 결과 HEC-HMS는 0.25(NES*)의 목적함수 값을 나타내었고, 9개의 개념적 강우-유출모형은 0.14~0.83(NES*)의 목적함수 값을 나타내었다. 이 중 CWI-3PAR, CWI-2PMP, PDM-3PAR와 PDM-2PMP 모형이 0.16~0.26(NES*)으로 우수한 성능을 보이며, HEC-HMS 모형의 첨두유량 과소평가에 대한 문제점을 해결하였다. 이를 통하여 CWI-3PAR, CWI-2PMP, PDM-3PAR와 PDM-2PMP 모형이 증평유역의 지역화를 위한 단기사상 강우유출모형으로 적합하다고 판단된다. 향후 연구유역을 확장하여 추가적인 연구를 통해 일반화된 결론을 얻을 필요가 있다.

  • PDF