• Title/Summary/Keyword: HDD Suspension

Search Result 42, Processing Time 0.028 seconds

Track Seek Dynamics of HDD Suspension System Considering Air Bearing Effects (공기 베어링 효과를 고려한 HDD 서스펜션 시스템의 트랙탐색 동특성)

  • Kim, Jeong-Ju;Park, No-Yeol;Gang, Tae-Sik;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.198-205
    • /
    • 2001
  • Recently, almost all hard disk drives employ the rotary actuator system. The performance of an HDD depends on the accuracy and speed of tracking motion. We study the dynamics of head-suspension assembly during track seek. We develop the numerical analysis program to study the dynamic characteristics of HDD suspension system considering the air bearing effects. The track seek simulation by using the developed program helps to estimate the effect of the suspension vibration on the air bearing dynamics. We calculate the behaviour of the air bearing for the given track seek profile and calculate the positioning error during track seek process due to the lateral deflection of the suspension.

Design of HDD Load/Unload Suspension Using Shape Memory Alloy (형상기억합금을 이용한 HDD Load/Unload 서스펜션의 설계)

  • Lim S. C.;Park Y. P.;Park N, C.;Choi S, B.
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.163-170
    • /
    • 2005
  • In this work, we propose a new type of HDD Load/unload (L/UL) suspension featuring shape memory alloy (SMA). The mechanical and thermal properties of the SMA film with respect to the material phase states are experimentally estimated and the SMA film is carefully integrated to the suspension. In order to obtain the desirable dynamic characteristics of the suspension during L/UL process, the design parameters of the SMA film such as geometric properties are determined by considering the vibration modes of the suspension related to the L/UL performance. After analyzing the modal characteristics of the proposed suspension, L/UL performance is evaluated through L/UL simulation by observing the vibration motion and minimum flying height of the slider during L/UL process.

  • PDF

Design of HDD Load/Unload Suspension Using Shape Memory Alloy (형상기억합금을 이용한 HDD Load/Unload 서스펜션의 설계)

  • Lim, Soo-Cheol;Park, Young-Pil;Park, No-Cheol;Choi, Seung-Bok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 2006
  • In this work, we propose a new type of HDD Load/Unload(L/UL) suspension featuring shape memory alloy(SMA). The mechanical and thermal properties of the SMA film with respect to the material phase states are experimentally estimated and the SMA film is carefully integrated to the suspension. In order to obtain the desirable dynamic characteristics of the suspension during L/UL process, the design parameters of the SMA film such as geometric properties are determined by considering the vibration modes of the suspension related to the L/UL performance. After analyzing the modal characteristics of the proposed suspension, L/UL performance is evaluated through L/UL simulation by observing the vibration motion and minimum flying height of the slider during L/UL process.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Opimization of HDD Suspension Shape Using Sensitivity Analysis and Sequential Linear Programing (감도해석 및 순차적 선형계획법을 이용한 HDD 서스펜션의 형상 최적화)

  • Hwang, C.H.;Kim, D.W.;Lee, J.S.;Park, Y.P.;Park, N.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.128-133
    • /
    • 2002
  • The main obstacle to high track density in HDD is the structural resonances of the suspension. The most critical mode is sway mode and second torsion mode, when a data is read and written. It is common fact that the effect of two modes is smaller when a thickness is bulky. But the stiffness of suspension is smaller, the slider can follow a disk better. Because these two fact are reciprocal, a compromise is needed. So we investigated another method to improve band width without changing of the thickness of suspension but with changing of the shape. In this paper, we use two method - Sensitivity analysis and SIP using ADS. And we obtained the optimized value close to target value.

  • PDF

Optimization of HDD Suspension Shape Using Sensitivity Analysis and Sequential Linear Proframing (감도해석 및 순차적 선형계획법을 이용한 HDD 서스펜션의 형상 최적화)

  • Hwang, Chang-Ho;Kim, Dong-Wook;Park, No-Cheol;Lee, Jongsoo;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.319.2-319
    • /
    • 2002
  • The main obstacle to high track density in HDD id the structural resonances of the suspension. The most critical mode is sway mode and second torsion mode, when a data is read and written. It is common fact that the effect of two modes is smaller when a thickness is bulky. But the stiffness of suspension is smaller, the slider can follow a disk better. Because these two fact are reciprocal, a compromise is needed. So we investigated another method to improve band width without changing of the thickness of suspension but with changing of the shape. (omitted)

  • PDF

Optimal design of the suspension stiffness in HDD for improving the load/unload performance (램프 로드-언로드 특성 향상을 위한 서스펜션강성 최적설계)

  • 강태식;김태수;이철우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.898-901
    • /
    • 2003
  • In order to get the drive reliability and low Power-consumption characteristics, most of small form factor HDD has und the load/unload mechanism instead of CSS type. Compared with CSS mechanism, the load/unload system has little opportunity of head/media contact during the disk spin-up and down. However, the load/unload mechanism needs the precise integration technology with slider, suspension, ramp and load/unload velocity, and all of these component s should be designed simultaneously, not an individually. In this paper, we focus the design of the suspension stiffness using the specified ABS design. We use the CML software to calculate the load/unload dynamic and use the RSM(Response surface method) to get the optimal condition of the suspension stiffness.

  • PDF

Tribological Induced Dynamic Characteristics Analysis of HDD Slider-Suspension Assembly (트라이볼로지 문제를 고려한 하드 디스크 슬라이더-서스펜션의 동특성 해석)

  • 김청균;차백순
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.64-71
    • /
    • 2001
  • This paper presents dynamic responses of disk flutter and bump in HDD slider. The slider is modeled for three degree-of-freedom systems, which are capable of lifting, pitching, and rolling motions. In numerical analysis, loads from air pressure, preload and static moments from the slider, and stiffness and damping coefficients of the suspension are considered for investigating the dynamic characteristics analysis. The numerical results are presented as functions of typical parameters such as a disk velocity, stiffness and damping coefficients of the suspension, and skew angle.

Modal Tuning of HDD suspension system (HDD 서스펜션의 모달 튜닝)

  • Kim, Dong-Woohn;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1583-1588
    • /
    • 2000
  • The dynamic characteristics of a HDD suspension system are investigated by finite element analysis and experimental modal analysis. A finite element model of the suspension Type850 was developed for unloaded case. The calculated vibration modes were compared with measurements and agree well in shape and frequency except some local modes. Local thickness and Young's modulus of the finite element model are updated by modal tuning method to develop the precise FE model. A sensitivity matrix of the natural frequencies for some design variables was calculated using finite difference method. Most natural frequencies calculated by the tuned FE model coincide with the measurements and the errors between them are less than 2%.

  • PDF