• Title/Summary/Keyword: HD diesel engine

Search Result 10, Processing Time 0.032 seconds

An Exhaust Gas Study of HD Diesel Engine with the Electronic control EGR (전자제어 EGR을 사용한 대형디젤기관의 배출가스연구)

  • Park Kyi-yeol;Oh Yong-suk;Moon Byung-chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Modem after-treatment technology has been developed variously in order to decrease exhausted emission in diesel engine. However, it seems very difficult to comply with updated stringent emission standards. Specially, it has been many years that exhaust gas from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the electronic control EGR and the target for this research is heavy-duty turbo-diesel engine with EGR technology(High pressure route and low pressure route system).

A Exhaust Gas Study by EGR in Heavy-Duty Diesel Engine (대형디젤기관에서 EGR에 의한 배출가스 연구)

  • 한영출;류정호;오용석;이현우;강호인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.285-291
    • /
    • 2000
  • EGR(Exhaust Gas Recirculation) is known as the technique reducing the NOx emissions from diesel engine. Low pressure roote and high pressure roote are applied for heavy-duty diesel engine are. In this study, as research for the heavy duty diesel engine equipped with EGR, reduction characteristic of CO, THC, NOx, and PM in HD diesel engines are investigated by applying EGR device. Also, through the experiments using 11 liters, turbocharged diesel engine with EGR valve and intercooler, exhaust gas reduction characteristics were measured as changing in EGR rate according to D-13 mode.

  • PDF

Investigation of Combustion Strategy for Commercialization of Low Temperature Diesel Combustion Engine (저온연소엔진 실용화를 위한 연소전략에 대한 연구)

  • Shim, Euijoon;Han, Youngdeok;Shin, Seunghyup;Kim, Duksang;Kwon, Sangil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.120-127
    • /
    • 2014
  • Robustness and controllability are the key factors in internal combustion engine commercialization. This study focuses on the combustion strategy to commercialize the low temperature diesel combustion technology. Various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. To find the best feasible LTC strategy, emission level, fuel consumption and combustion safety during the combustion mode change were considered. Experiments were carried out under various engine operating conditions; engine speed & load, EGR level, injection timing. Finally, this study suggests realizable LTC combustion strategy; moderate EGR level and slight early injection are possible to considerably lower PM, NOx emission and expand LTC operating range up to 50% load without CO and HC emission.

COMBINED EFFECTS OF BD20, LOW SULFUR DIESEL FUEL AND DIESEL OXIDATION CATALYST IN A HD DIESEL ENGINE

  • Baik, D.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.653-658
    • /
    • 2006
  • The enormous increase in the use of fossil energy sources throughout the world has caused severe air pollution and a depletion of energy. Besides, it seems very difficult to comply with the upcoming stringent emission standards in vehicles. In order to develop low emission engines, research on better qualified fuels as alternative fuels to secure high engine performance becomes a more important issue than ever. Since sulfur contained in diesel fuel is transformed in sulfate-laden particulate matters when a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. But the excessive reduction of sulfur levels may cause the lubricity of fuel and engine performance to degrade. In this aspect, biodiesel fuel derived from rice bran is applied to compensate viscosity lost in the desulfurization treatment. This research is focused on the performance of an 11,000cc diesel engine and the emission characteristics by the introduction of ULSD(Ultra Low Sulfur Diesel), BD20(Diesel 80%+Biodiesel 20%) and a diesel oxidation catalyst, where BD20 is used to improve the lubricity of fuel in fuel injection systems as fuel additives or alternative fuels.

The Performance Test on A Continuous Regeneration DPF in A HD Diesel Engine (대형디젤기관에 있어서 연속재생방식 매연저감장치 성능 테스트)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.788-792
    • /
    • 2006
  • The test was conducted on an 8000cc heavy-duty turbo-charged heavy-duty diesel engine on which continuous regeneration DPF was installed in order to investigate regeneration characteristics fur DPF and engine performance under conditions of standard (430ppm) or ultra low sulfur diesel (50ppm) and the results were compared with each other. Exhaust emissions, CO, HC, NOx, PM and soot were investigated carefully and tested under D-13 and D-3 modes.

  • PDF

Development of Low Temperature Diesel Combustion Engine for Construction Equipments (건설기계용 저온연소 엔진시스템 개발)

  • Shim, Euijoon;Kim, Duksang;Lee, Dongin;Park, Yonghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.83-88
    • /
    • 2014
  • LTC(Low Temperature Combustion) technology has been studied to see feasibility of the combustion technology applied to heavy-duty engines on the laboratory scale. This study succeeded to develop a demo engine including realized low temperature combustion under partial load conditions. To find the best feasible LTC strategy, various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. Air management system was re-designed to make these combustion scheme stable and the re-designed air system helped expand LTC operating range. This study finally revealed plausible LTC concept to maximize benefit of the alternative combustion technology while overcoming handicaps of the LTC strategy.

Engine Performance and Emission Characteristics in A HD Diesel Engine by the Application of GTL Fuel (대형디젤기관에서 GTL 연료 적용에 따른 기관성능 및 배출 가스 특성)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.998-1003
    • /
    • 2006
  • In this research, engine performance and emission characteristics of a 12,000cc heavy duty diesel engine was investigated by the application of GTL and ULSD fuels. The test was conducted at several engine speeds and loads under a single mode and a ESC mode. GTL fuel proves that it can be applicable to vehicles without engine modification.

  • PDF

The Effect of Engine Performance and Emission Characteristics in A HD Diesel Engine by The Application of Oxygen-enriched and EGR (디젤기관에서 산소과급과 EGR에 의한 기관성능 및 배출특성에 미치는 효과)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.778-783
    • /
    • 2006
  • Numerous researches have been conducted to investigate an optimal EGR rate which minimizes emission levels of NOx without increasing PM or loosing an engine power. In this research, the interrelation among engine parameters were intensively investigated and evaluated quantitatively, and proposed some directions in design of a heavy diesel engine by applying EGR and Oxygen-enriched system.

  • PDF

Nano Particle Emission Charataristics of Biodiesel (바이오디젤의 미세입자 배출특성)

  • Song, Hoyoung;Lee, Minho;Kim, Jaigueon;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.199.2-199.2
    • /
    • 2010
  • Biodiesels are well-known as alternative fuels. also we know that biodiesels increase NOx and reduce PM(Particulate Matter) by previous many studies. But PM in most these studies was considered about the mass. In this study, We have performed experimental test for PM and exhaust emission by mixed ratio of biodiesel in heavy duty diesel engine. PM was investigated by The nano particle number and the mass. The mass of PM was evaluated by using the standard gravimetric method, The number of PM was evaluated by using the EEPS(Engine Exhaust Particle Sizer), on the ESC(European Steady Cycle) mode. Sampled gas through dilutor was directly extracted from tail pipe and EEPS measured diluted exhaust gas. Biodiesel is made up of used cooking oil. Diesel as base fuel was sold on market and contains 2% biodiesel. The mass of PM was reduced 10% and the nano particle number was increased 5%. The particle number less than 40nm was increased, but the particle number more than 40nm is decreased.

  • PDF

Basic Study on the Performance Improvement of HD Diesel Engine (대형 디젤엔진의 소음 개선에 대한 기초 연구)

  • 김규철;이삼구;주봉철;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.181-188
    • /
    • 2001
  • The evaluation of the noise for the an existing engine was carried out to improve the current noise level. The applied techniques were 1m air-borne noise, combustion noise analysis, torsional analysis at the front pulley and sound pressure intensity. In addition, the evaluation of the possibility to the noise reduction by means of wrapping the parts was performed to propose the detailed information in engine design. In view of the obtained results, the following countermeasures were recommended to reduce the current noise level through the above methods. Furthermore, in order to assess the influence of combustion noise on the overall engine noise, the noise test was also performed by the change of intake air temperature up to 5$0^{\circ}C$ in steps of 1$0^{\circ}C$. Finally, the fixed design specifications to reduce the engine noise will be decided in consideration of the test data for proto type engine.

  • PDF