• Title/Summary/Keyword: HCN

Search Result 173, Processing Time 0.03 seconds

Studies on Synthesis and Accumulation Pattern of Cyannogenic Glycosides in Sorghum Piants (Sorghum 식물에 있어서 Cyanogenic Glycosides의 합성 및 축적에 관한 연구)

  • ;G. Voigtlaender
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.2
    • /
    • pp.121-126
    • /
    • 1985
  • Phytotron and field experiments were conducted to determine the influence of morphological growth stage and environmental temperature on synthesis and accumulation pattern of cyanogenic glycosides in sorghum cv. Pioneer 931 and Sioux at Munich technical university from 1979 to 1980. Various growth stages of sorghum plants were grown in phytotron at 4 different temperature regimes of 30/25, 25/20, 28/18 and 18/8 degree C with 35,000 Lux over 13-h days. The results obtained are summarized as follows: 1. Cyanogenic glycosides in sorghum plants were shown to have a great synthetic rate at early growth stages. The highest concentrations of hydrocyanic acid (HCN) were found at 2-leaf stage with 2384 and 1800ppm (DM basis) for Pioneer 931 and Sioux respectively. The contents of HCN were, however, however decreased markedly as morphological development, which shows a value of 173ppm (Pioneer 931) and 70ppm (Sioux) at heading stages. 2. Changes of hydrocyanic acid in sorghum plants were positive correlated with leaf weight ratio and leaf area ratio ($P{\leqq}0.1%$), while plant height shows a negative correlation with HCN contents ($P{\leqq}0.1%$). 3. Cyanogenic glycosides were accumulated in young plants mainly in leaves. During the late maturities, the contents of HCN in leaves and stalks were shown, however, a similar distribution. 4. Synthesis rates of cyanogenic glycosides were increased under high temperature. Accumulated hydrocyanic acid in the plants was, however declined when temperature exceeded 30 degree C. 5. Synthesis rates of cyanogenic glycosides were affected by nitrogen reductase activity (NRA). The concentration of hydrocyanic acid in sorghum plants was associated with increasing of nitrate-N accumulation.

  • PDF

HCN AND HCO+ EMISSION IN M31 : TRACING THE DENSE MOLECULAR GAS IN A GALACTIC DISK

  • MULLER SEBASTIEN;BROUILLET NATHALIE;HERPIN FABRICE;BRAINE JONATHAN;JACQ THIERRY
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.245-248
    • /
    • 2005
  • We present mm observations with the IRAM 30m radiotelescope of the HCN (J=1-0) and HCO+ (J=1-0) emission lines from Giant Moleculat Clouds (GMC) in the disk of the Andromeda Galaxy, The selected GMC targets have various morphology and environments, including locations within spiral arms or in interarm regions and with galactocentric radii ranging from 2.4 to 15.5 kpc over the disk. The radial distributions of the ratios HCN/CO and HCO+ /CO are discussed and their values are compared to other galaxies.

Transverse relaxation-optimized HCN experiment for tautomeric states of histidine sidechains

  • Schmidt, Holger;Himmel, Sebastian;Walter, Korvin F.A.;Klaukien, Volker;Funk, Michael;Lee, Dong-Han
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Function of protein is frequently related with tautomeric states of histidine sidechains. Thus, several NMR experiments were developed to determine the tautomeric states of histidines. However, poor sensitivity of these experiments caused by long duration of magnetization transfer periods is unavoidable. Here, we alleviate the sensitivity of HCN experiment for determining the tautomeric states of histidine residues using TROSY principle to suppress transverse relaxation of $^{13}C$ spins during long polarization transfer delays involving $^{13}C-^{15}N$ scalar couplings. In addition, this experiment was used to assign the sidechain resonances of histidines. These assignments can be used to follow the pH-titration of histidine sidechains.

Loss of HCN from the Pyrimidine Molecular Ion: A Computational Study

  • Yim, Min Kyoung;Jung, Sun Hwa;Kim, Myung Soo;Choe, Joong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4098-4102
    • /
    • 2012
  • The potential energy surface (PES) for the loss of HCN from the pyrimidine molecular ion has been explored using quantum chemical calculations. Possible reaction pathways to form five $C_3H_3N^{+{\bullet}}$ isomers have been obtained with Gaussian 4 model calculations. The rate constant for the HCN loss and the product branching ratio have been calculated using the Rice-Ramsperger-Kassel-Marcus theory on the basis of the obtained PES. The resultant rate constant agrees with the previous experimental result. By a kinetic analysis, it is proposed that the formation of $CH=CHC{\equiv}NH^{+{\bullet}}$ is favored near the dissociation threshold, while the formation of $CH=CHN{\equiv}CH^{+{\bullet}}$ is favored at high energies.

Quantitative Analysis of Prussic Acid by Micro-Diffussion Analysis. (I) Determination of Prussic Acid in HCN-Glucoside of Armeniaca. (미량확산분석법에 의한 청산의 정량법 (제1보) 청산배당체(행인)중의 청산의 정량)

  • 심상혁;서정현
    • YAKHAK HOEJI
    • /
    • v.4 no.1
    • /
    • pp.43-46
    • /
    • 1959
  • A new quantitiative analytical method of prussic acid by "Microdiffusion analysis" was studied. HCN-Glucoside of ARMENIACA was hydrolysed with KOH in out-room of unit, and then concentrated sulfuric acid was poured in order to liberate the HCN gas. The liberated gas was absorbed into nickel sulfate solution of inner room of unit quantitatively. The excess of nickel sulfate was determined by EDTA Reagent using MX-indicator. By this method, the following results were obtained: (1) It was needed more than 4 hours, in order to hydrolyse completely at $50^{\circ}C$, but could be shortened to 3 hrs. at $^60{\circ}C$. (2) It was completely absorbed into nickel sulfate solution after 30min.

  • PDF

DENSE MOLECULAR CLOUDS IN THE GALACTIC CENTER REGION II. H13CN (J=1-0) DATA AND PHYSICAL PROPERTIES OF THE CLOUDS

  • Lee, Chang-Won;Lee, Hyung-Mok
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.4
    • /
    • pp.271-282
    • /
    • 2003
  • We present results of a $H^{13}CN$ J=1-0 mapping survey of molecular clouds toward the Galactic Center (GC) region of $-1.6^{\circ}{\le}{\iota}{\le}2^{\circ}$ and $-0.23^{\circ}{\le}b{\le}0.30^{\circ}$ with 2' grid resolution. The $H^{13}CN$ emissions show similar distribution and velocity structures to those of the $H^{12}CN$ emissions, but are found to better trace the feature saturated with $H^{12}CN$ (1-0). The bright components among multi-components of $H^{12}CN$ line profiles usually appear in the $H^{13}CN$ line while most of the dynamically forbidden, weak $H^{12}CN$ components are seldom detected in the $H^{13}CN$ line. We also present results of other complementary observations in $^{12}CO$ (J=1-0) and $^{13}CO$ (J=1-0) lines to estimate physical quantities of the GC clouds, such as fractional abundance of HCN isotopes and mass of the GC cloud complexes. We confirm that the GC has very rich chemistry. The overall fractional abundance of $H^{12}CN$ and $H^{13}CN$ relative to $H_2$ in the GC region is found to be significantly higher than those of any other regions, such as star forming region and dark cloud. Especially cloud complexes nearer to the GC tend to have various higher abundance of HCN. Total mass of the HCN molecular clouds within $[{\iota}]{\le}6^{\circ}$ is estimated to be ${\~}2 {\times}10^7\;M_{\bigodot}$ using the abundances of HCN isotopes, which is fairly consistent with previous other estimates. Masses of four main complexes in the GC range from a few $10^5$ to ${\~}10^7\;M_{\bigodot}$ All the HCN spectra with multi-components for the four main cloud complexes were investigated to compare the line widths of the complexes. The largest mode (45 km $s^{-1}$) of the FWHM distributions among the complexes is in the Clump 2. The value of the mode tends to be smaller at the farther complexes from the GC.

VERTICAL DISTRIBUTIONS OF NITRILES OVER TITAN'S NORTH POLAR REGION

  • Kim, Sang-Joon
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.75-90
    • /
    • 1996
  • The vertical distribution of HCN, $HC_3N$ and $C_2N_2$ have been determined from a sequence of Voyager 1 IRIS limb tangent measurements over Titan's north polar region. This sequence yields gas distributions with ${\sim}200\;km$ altitude resolution over the 50-400 km range. The derived mixing ratios of HCN, $HC_3N$ and $C_2N_2$ are $5{\times}10^{-7}$, $7{\times}10^{-8}$ and $8{\times}10^{-9}$, respectively, at 120 km with a factor of 3 uncertainty.

  • PDF

Combustive Characteristic and Toxic Gases Generation of Interior Materials -The focus for resist-carpet, resist-after-tretment plywood, sofa leather- (내장재의 연소 및 독성가스 발생 특성 -방염 카페트, 방염 후처리 합판, 쇼파 내자를 중심으로-)

  • 김일수;류경옥
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.43-59
    • /
    • 1998
  • It was studied a compared estimation of the fire risk of the three kinds of the interior materials, such as a resist carpet, a resist-after-treatment plywood and sofa leather. Toxic gases, CO, CO2, NOx, SO2, HCN, HCI were detected during the combustion of the samples. A resist-carpet was more combustible than the resist-after-treatment plywood and sofa leather in the combustion characteristics and has a blow-up-combustion of combustion in all the samples. The generation of CO reached the lethal doses in minute after the combustion was begun. NOx and So2 were detected not more than each of the lethal doses, while HCN was detected in the carpet 20.6 times than the sofa leather, and 4.6 times than the resist-after-treatment plywood. HCI was detected in the carpet 4.48 times than the sofa leather and 2.47 times than the resist-after-treatment plywood. It is conclusion that the carpet was the highest in the fire risk among the three kinds of the interior materials.

  • PDF

Study on the Effect of Toxic Gas Filter Effect of Wet Towel during Fire (화재 시 젖은 수건의 유독가스 필터 효과에 관한 연구)

  • Sim, Jaeung;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.52-56
    • /
    • 2018
  • The damage caused by fires is fatal as opposed to the damage caused by heat, and toxic gas generated by fires can be protected against by using a wet towel. In this study, we quantified the filtration effect of gas generated by an actual fire using a wet towel. In order to confirm the filtration effect of the wet towel on three harmful gases ($CO_2$, HCl, HCN), gases passed through a filter using FT-IR were analyzed in realtime. HCl and HCN, which are gases, were filtered by a wet towel, and the detection time of each gas was delayed. Therefore, it was confirmed that evacuation time can be secured by using a wet towel in the case of toxic gas, especially water-soluble gases in an actual fire.

MOLECULAR GAS AND RADIO JET INTERACTION: A CASE STUDY OF THE SEYFERT 2 AGN M51

  • MATSUSHITA, SATOKI;TRUNG, DINH-V;BOONE, FRDERIC;KRIPS, MELANIE;LIM, JEREMY;MULLER, SEBASTIEN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.439-442
    • /
    • 2015
  • We observed multiple CO transition lines and the HCN(1-0) line at ~ 1" (~ 34 pc) or higher resolution toward the Seyfert 2 nucleus of M51 using the IRAM Plateau de Bure Interferometer (PdBI) and the Submillimeter Array (SMA). All the images show very similar overall molecular gas distribution; there are two discrete clouds at the eastern and western sides of the nucleus, and the western cloud exhibits an elongated distribution and velocity gradient along the radio jet. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratios of about unity have been observed, especially along the radio jet, similar to those observed in shocked molecular gas in our Galaxy. This strongly indicates that the molecular gas along the jet is shocked, that the radio jet and the molecular gas are interacting, and the jet is entraining both diffuse (CO) and dense (HCN) molecular gas outwards from the circumnuclear region. This is the first clear imaging of the outflowing molecular gas entrained by the AGN jet, and showing the detailed physical status of outflowing molecular gas. Since a relatively high HCN(1-0)/CO(1-0) ratio has been observed in the high velocity wing of ultraluminous infrared galaxies, it can also be explained by a similar mechanism to those we describe here.