• Title/Summary/Keyword: HC배출

Search Result 179, Processing Time 0.022 seconds

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Marine Diesel Engine (선박용 디젤기관의 연료분사 시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.307-312
    • /
    • 2002
  • A study on the exhaust emissions of marine diesel engine with various fuel injection timing is performed experimentally .In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 0% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx, HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) NOx emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

A Study on the Characteristics of VOCs Exhausted from Motor Vehicles (자동차에서 배출되는 VOCs 배출특성에 관한 연구)

  • 임철수;엄명도;류정호;유영숙;이상보;선우영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.77-78
    • /
    • 2001
  • 자동차는 차종, 차령 및 사용연료에 따라 매우 다양한 배출가스를 발생시키며 이러한 물질 중 CO, HC, NOx, PM 등은 배출가스 허용기준에 따라 규제되고 있다. 반면에 미량유해물질로서 자동차 배출가스에는 알데히드, PAHs, VOCs등은 인체위해성 및 대기중 오존생성원인물질로서 대기오염에 미치는 영향이 강조되고 있다. 본 연구에서는 자동차에서 배출되는 이들 물질중 VOCs 배출특성을 파악하여 배출 허용기준을 마련하기 위한 기초자료로서 이용하고, 이러한 결과를 토대로 미량유해물질에 대한 대기오염 관리대책을 마련하는데 기여하고자 하였다. (중략)

  • PDF

Effect of Engine Operating Conditions on Combustion and Exhaust Emission Characteristics of a Gasoline Direct Injection(GDI) Engine Fueled with Bio-ethanol (직접분사식 가솔린엔진에서 운전조건에 따른 바이오에탄올의 연소 및 배기배출물 특성)

  • Yoon, Seung Hyun;Park, Su Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.609-615
    • /
    • 2015
  • In this study, the combustion and exhaust emission characteristics in a gasoline direct injection engine with variations of the bio-ethanol-gasoline blending ratio and the excess air factor were investigated. To investigate the effects of the excess air factor and the bio-ethanol blends with gasoline, combustion characteristics such as the in-cylinder combustion pressure, rate of heat release (ROHR), and the fuel consumption rate were analyzed. The reduction of exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), and nitrogen oxides ($NO_x$) were compared with those of gasoline fuel with various excess air factors. The results showed that the peak combustion pressure and ROHR of bio-ethanol blends were slightly higher and were increased as bio-ethanol blending ratio is increased. Brake specific fuel consumption increased for a higher bio-ethanol blending ratio. The exhaust emissions decreased as the bio-ethanol blending ratio increased under all experimental conditions. The exhaust emissions of bio-ethanol fuels were lower than those of gasoline.

A study on Property of Emission Gas by the Content Variation of Urea (UREA의 함량 변화에 따른 배출가스 특성분석)

  • Kang, Hyungkyu;Doe, Jinwoo;Hwang, Inha;Im, Jaeheuk;Ha, Jonghan;Na, Byungki
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.24-32
    • /
    • 2015
  • National and international regulations on the exhaust gases of diesel engines are being strengthened, and a study of the combutsion engine and the post-porcessing system are in progress as a variety of ways. There are many techniques for the removal of nitrogen oxide like HC-SCR, LNT, Urea-SCR. And the technical development on the Urea-SCR owing to high conversion efficiency and fuel economy characteristics has being processed. This study investigated the physical/chemical properties of urea according to the change of the urea content, and were analysed the characteristic of exhaust gas. According to the increase of urea content, the contests of biuret aldehyde, phosphate content was increased and the changes of emission quantity of carbon monoxide, hydrocarbons and particulate matter in the exhaust gas was very slight. The emission quantity of NOx was decreased in accordance with increasing the urea content and it was shown to be more than 80 % in the urea solution having more than 30 wt%.

A Study on Combustion And Exhaust Emissions of Diesel Engine -For Gas Oil-Water Emulsified Fuel- (디젤 기관의 연소와 배출물에 관한 연구 -경유-물물의 유화연료 사용시-)

  • 조진호;김형섭;박정률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.180-188
    • /
    • 1992
  • By means of the compatibility according to solving environmental pollution and energy problem due to the emissions of NOx and smoke from diesel engine this paper experimentally inspected the effect of using emulsified fuel, gas oil-water, for combustion characteristic, that is combustion pressure, pressure rise rate, heat generating rate, the period of ignition delay and specific fuel consumption, and CO, HC, NOx concentration and smoke density. When using emulsified fuel, as a water addition rate was increased, combustion pressure, pressure rise rate and heat generating rate was increased, the period of ignition delay was lengthening, the specific fuel consumption was some what increased in contrast to diesel fuel in low load, but deceased in high load region. And NOx concentration was decreased, CO concentration was increased in low load, but decreased in high load region, HC concentration was increased in contrast to diesel fuel in all region.

Diesel Engine Combustion Characteristics on the Natural Gas Mixing (천연가스 혼합에 의한 디젤기관의 연소특성)

  • Park, Myung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.9-12
    • /
    • 2007
  • In this study, a new method of combustion characteristics have been proposed to reduce exhaust emissions in a diesel engine using four kinds of mixed fuel. Mixed fuels show four different torque ratios between diesel oil md natural gas, which are 4:0, 3:1, 2:2 and 1:3. In order to investigate the exhaust gas during combustion, exhaust gases are sampled by gas analyzer, for example NOx, Soot, CO, and HC, as the RPM changed. As a result, the NOx, CO, and HC concentrations of mixed fuel are higher than those of diesel oil only. However, the Soot concentration of mixed fuel is lower when diesel oil is burned.

  • PDF

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출특성에 미치는 영향)

  • Woo, Young-Min;Bae, Choong-Sik;Lee, Yong-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.796-801
    • /
    • 2001
  • During cold operation period, fuel injection system directly contributes the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA. 6-hole injector was found to produce finer spray than single hole one. Using a purpose-built test rig, the wall wetting fuel was measured, which was mostly affected by wall temperature. Varying coolant temperature($20{\sim}80^{\circ}C$), HC emissions were measured in a production engine. With respect to the different types of injectors, HC emission was also measured. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect between different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

  • PDF

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향)

  • 우영민;배충식;이동원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

The Effects of Fuel Injection Skips on the Reduction of Harmful Exhaust Gases during an SI Engine Starting (가솔린 기관의 시동시 연료분사스킵이 유해배출가스 저감에 미치는 영향)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • During the SI engine starting up, starting conditions directly contribute to the harmful emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame Ionization Detector(FRFID). The result showed that HC emissions, which were generated during initial stage of the starting, could be reduced by coolant temperature and fuel injection skips. And through the vehicle test of ECE15+EUDC, it is convinced that the optimized fuel injection skip method according to coolant temperatures have favourable effects on the reduction of harmful exhaust emissions including HC during the SI engine start.

  • PDF