• Title/Summary/Keyword: HBcAg gene

Search Result 6, Processing Time 0.021 seconds

The Expression of Codon Optimised Hepatitis B Core Antigen (HBcAg) of Subgenotype B3 Open Reading Frame in Lactococcus lactis

  • Mustopa, Apon Zaenal;Wijaya, Sri Kartika;Ningrum, Ratih Asmana;Agustiyanti, Dian Fitria;Triratna, Lita;Alfisyahrin, Wida Nurul
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.449-458
    • /
    • 2019
  • Hepatitis B treatments using immune therapy are gaining interest because of the improvements in dendritic cell performance for antigen presentation, which induces an appropriate immune response and raises patient survival rates. This research aims to produce a significant amount of the HBcAg antigen, which can induce an immune response and have a curative effect on HBV infection. In this study, the HBV subgenotype B3 of the HBcAg gene was used, which is dominant in Indonesia. Further, Lactococcus lactis bacteria was used as the host because of its safety and tightly regulated protein expression. The codon usage for the HBcAg gene was optimized to improve protein expression in L. lactis, which is important because a codon is not random between species. The HBcAg gene is attached to a pNZ8148 plasmid and transformed into the L. lactis NZ3900 expression host. The results confirm that a positive protein band (21 kDa) in two fractions of purified HBcAg was recognized by both western blotting and dot blot hybridization, even if the HBcAg optimized codon has higher GC contents than that suggested for L. lactis expression. Overall, this research strengthens the broad use of L. lactis bacteria for any protein expression, including higher protein expression of codon optimized HBcAg gene compared to non-optimized genes. Furthermore, the improvement in the codon optimization of the HBcAg gene significantly increases the total protein expression by 10-20%, and the expression level of the codon optimized HBcAg increases 1.5 to 3.2-times that of the native HBcAg.

Expression of Hepatitis B Viral Core Antigen Gene in Excherichia coli (대장균에서 한국형 B형 간염바이러스 내면항원 유전자의 발현)

  • 최수근;이원상;김성기;노현모
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.80-84
    • /
    • 1991
  • We cloned and expressed hepatitis B viral core antigen (HBcAg) gene in E. coli using $P_{L}$ promoter system. For optimal expression of the gene, we undertook the studies on the effects of the distance between Shine-Dalgarno (SD) sequence and start codon, copy number of repressor gene, induction temperature, and the stability of the core antigen. The results demonstrated that the induction at 37.deg.C was more efficient than at 42.deg.C, and the 11 base pairs (bp) distance between SD sequence and start codon of HBcAg gene was more efficient than the 15 bp distance in E. coli. The copy number of cI857 repressor gene did not influence on the expression of HBcAg, and the expression level of HBcAg in mutant type (low protease activity) and wild type strains was almost the same. The produced core antigen appeared to be HBcAg not HBeAg judged by two different radioimmunoassat (RIA) kits. This result suggested that the antigen was stable in E. coli.i.

  • PDF

Expression and Secretion of Hepatitis B Viral Mutant Core Antigen (B형 간염 바이러스의 돌연변이 내면항원의 발현 및 분비)

  • 김용석;김성기;노현모
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.169-175
    • /
    • 1989
  • To study the role of mutant precore region in expression and secretion of hapatitis B viral core antigen, we have cloned core antigen gene(HBc) with or without precore region in geterologous expression vectors containing SV40 promoter, yeast promoter, and lambda $P_{L}$ promoter. In COS cells transfected with plasmid containing C-gene with precore region, antigens were detected in both cell extract and cultured medium. However, in the cells transfected with plasmids containing C-gene without precore or with mutated precore region by one nucleotide (T) addition at the nucleotide 1,821, HBcAg was detected only in cell extracts. These results support that the mutation by one nucleotide addition shifted the initiation codon of precore region to 53 nucleotides upward and the elongated precore region also played a major role in the secretion of HBcAg in mammalian cells. In the case of yeast and E. coli, HBcAg was detected only in cell extracts in spite of the presence of precore region, which suggest that precore region could not affect HBcAg secretion in these system.

  • PDF

Role of pre-C Region in the Expression and Secretion of Hepatitis B Viral Core Antigen in Yeast (효모에서 B형 간염바이러스의 내면항원의 발현과 분비에 미치는 전위내면항원의 역할)

  • 신상훈;김성기;노현모
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 1990
  • The coding sequence of hepatitis B viral core antigen (HBcAg) (subtype adr) contains two in-phase initiation codons, one for precore and the other for core antigen gene. To study the expression of core antigen and the role of precore region, the coding sequence of HBcAg with or without precore (pre-C) region were subcloned into yeast expression vector containing phosphoglycerate kinase (PGK) promoter. To study the role of upstream region in the expression of the core antigen, a series of 5' deletion mutants were also subcloned into the vector. After transformation into various host strains, the expression of HBcAg were analysed by radio-immunoassat. Under optimal condition of core antigen gene expression in yeast, the highest amount of antigen was detected in the cell line SHY4 containing pGKHBc plasmid composed of the yeast PGK gene promoter, terminator and C-gene. Regardless of the presence of precore region, core antigen was not detected in the medium but in cell extract. These results suggest that precore region cannot affect the secretion of core antigen in Saccharomyces cerevisiae.

  • PDF

Replication of Hepatitis B Virus is repressed by tumor suppressor p53 (간암치료신약개발 및 이의 제제화 연구)

  • 이현숙;허윤실;이영호;김민재;김학대;윤영대;문홍모
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.178-178
    • /
    • 1994
  • Hepatitis B Virus (HBV) is a DNA virus with a 3.2kb partially double-stranded genome. The life cycle of the virus involves a reverse transcription of the greater than genome length 3.5kb mRNA. This pegenomic RNA contains all the genetic information encoded by the virus and functions as an intermediate in viral replication. Tumor suppressor p53 has previously been shown to interact with the X-gene product of the HBV, which led us to hypothesize that p53 may act as a negative regulator of HBV replication and the role of the X-gene product is to overcome the p53-mediated restriction. As a first step to prove the above hypothesis, we tested whether p53 represses the propagation of HBV in in vitro replication system. By transient cotransfection of the plasmid containing a complete copy of the HBV genome and/or the plasmid encoding p53, we found that the replication of HBV is specifically blocked by wild-type p53. The levels of HBV DNA, HBs Ag and HBc/e Ag secreted in cell culture media were dramatically reduced upon coexpresion of wild-type p53 but not by the coexpression of the mutants of p53 (G154V and R273L). Furthermore, levels of RNAs originated from HBV genome were repressed more than 10 fold by the cotransfection of the p53 encoding plasmid. These results clearly states that p53 is a nesative regulator of the HBV replication. Next, to addresss the mechanism by which p53 represses the HBV replication, we performed the transient transfection experiments employing the pregenomic/core promoter-CAT(Chloramphenicol Acetyl Transferase) construct as a reporter. Cotransfection of wild-type p53 but not the mutant p53 expression plasmids repressed the CAT activity more than 8 fold. Integrating the above results, we propose that p53 represses the replication of HBV specifically by the down-regulation of the pregenomic/core promoter, which results in the reduced DNA synthesis of HBV. Currently, the mechanism by which HBV overcomes the observed p53-mediated restriction of replication is tinder investigation.

  • PDF

The Potential Anti-HBV Effect of Amantadine in Combination with Ursodeoxycholic Acid and Biphenyl Dimethyl Dicarboxylate in HepG2 2.2.15 Cells

  • Joo Seong Soo;Lee Do Ik
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.451-457
    • /
    • 2005
  • Experimental studies have demonstrated that the triple combination of amantadine (A)/ ursodeoxycholic acid (UDCA, U)/ biphenyl dimethyl dicarboxylate (DDB, D) might have a preferential antiviral effect compared with that observed in interferon-induced antiviral signal pathways, such as those of $STAT1\alpha$ and the 6-16 genes. To confirm the results, this study examined whether th signal transduction for the antiviral activity in HepG2 2.2.15 was induced dependently or independently of interferon. To accomplish this, the correlation between the $STAT1\alpha$ and 6-16 genes, and nitric oxide, for the mediation of the antiviral activity was assessed. The increase in nitric oxide in the UDCA groups suggests that the inhibition of viral gene replication was enhanced by the amantadine combinations (AU and AUD), and might be more effective if incubated for longer periods. It was found that $STAT1\alpha$ was activated by the amantadine combination, although to a lesser extent than that of $interferon-\alpha$, and the primary endpoints examined for the inhibition of gene expression (HBsAg and HBcAg) were remarkably well regulated. This suggests that the amantadine triple, or at least the double, combination had better clinical benefits than those of $IFN-\alpha$ and the nucleoside analogue single treatment. This demonstrates that the amantadine combination might be a substitute for the existing HBV therapy if the results of in vivo and in vitro studies concur.