• Title/Summary/Keyword: HB

Search Result 1,652, Processing Time 0.019 seconds

Protoplast Fusion of Nicotiana glauca and Solanum tuberosum Using Selectable Marker Genes (표식유전자를 이용한 담배와 감자의 원형질체 융합)

  • Park, Tae-Eun;Chung, Hae-Joun
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.103-142
    • /
    • 1991
  • These studies were carried out to select somatic hybrid using selectable marker genes of Nicotiana glauca transformed by NPTII gene and Solanum tuberosum transformed by T- DNA, and to study characteristics of transformant. The results are summarized as follows. 1. Crown gall tumors and hairy roots were formed on potato tuber disc infected by A. tumefaciens Ach5 and A. rhizogenes ATCC15834. These tumors and roots could be grown on the phytohormone free media. 2. Callus formation from hairy root was prompted on the medium containing 2, 4 D 2mg/I with casein hydrolysate lg/l. 3. The survival ratio of crown gall tumor callus derived from potato increased on the medium containing the activated charcoal 0. 5-2. 0mg/I because of the preventions on the other hand, hairy roots were necrosis on the same medium. 4. Callus derived from hairy root were excellently grown for a short time by suspension culture on liquid medium containing 2, 4-D 2mg/I and casein hydrolysate lg/l. 5. The binary vector pGA643 was mobilized from E. coli MC1000 into wild type Agrobacteriurn tumefaciens Ach5, A. tumefaciens $A_4T$ and disarmed A. tuniefaciens LBA4404 using a triparental mating method with E. ccli HB1O1/pRK2013. Transconjugants were obtained on the minimal media containing tetracycline and kanamycin. pGA643 vectors were confirmed by electrophoresis on 0.7% agarose gel. 6. Kanamycin resistant calli were selected on the media supplemented with 2, 4-D 0.5mg/1 and kanamycin $100\mug$/ml after co- cultivating with tobacco stem explants and A. tumefaciens LBA4404/pGA643, and selected calli propagated on the same medium. 7. The multiple shoots were regenerated from kanamycin resistant calli on the MS medium containing BA 2mg/l. 8. Leaf segments of transformed shoot were able to grow vigorusly on the medium supplemented with high concentration of kanamycin $1000\mug$/ml. 9. Kanamycin resistant shoots were rooting and elongated on medium containing kanamycin $100\mug$/ml, but normal shoot were not. 10. For the production of protoplast from potato calli transformed by T-DNA and mesophyll tissue transformed by NPTII gene, the former was isolated in the enzyme mixture of 2.0% celluase Onozuka R-10, 1.0% dricelase, 1.0% macerozyme. and 0.5M mannitol, the latter was isolated in the enzyme mixture 1.0% Celluase Onozuka R-10, 0.3% macerozyme, and 0.7M mannitol. 11. The optimal concentrationn of mannitol in the enzyme mixture for high protoplast yield was 0.8M at both transformed tobacco mesophyll and potato callus. The viabilities of protoplast were shown above 90%, respectively. 12. Both tobacco mesophyll and potato callus protoplasts were fused by using PEG solution. Cell walls were regenerated on hormone free media supplemented with kanamycin after 5 days, and colonies were observed after 4 weeks culture.

  • PDF

Long-term Effect of Desferrioxamine to rHuEPO Resistant Anemia in Hemodialysis Patients (혈액 투석 환자에서 나타나는 rHuEPO 저항성 빈혈에 대한 Desferrioxamine의 장기 효과)

  • Lim, Sang-Woo;Jung, Hang-Jae;Bae, Sung-Wha;Do, Jun-Young;Yoon, Kyung-Woo
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.2
    • /
    • pp.399-414
    • /
    • 1997
  • There are several factors concerning to anemia in chronic renal failure patients. But when rHuEPO is used, most of these factors can be overcome, and the levels of hemoglobin are increased. However, about 10% of the renal failure patients represent rHuEPO-resistant anemia eventhough high dosage of rHuEPO. For these cases, desferrioxamine can be applied to correct rHuEPO resistnacy, and many mechanism of DFO are arguing. So we are going to know whether DFO can be applied to correct anemia of the such patients, how long its effect can be continued. The seven pateients as experimental group(DFO+EPO) who represent refractoriness to rHuEPO and the other seven patients as control group(EPO) were included. Experimental group had lower than 9 g/dL of hemoglobin levels despite high rHuEPO dosage (more than 4000U/Wk) and showed normocytic normochromic anemia. There were no definitve causes of anemia such as hemorrhage or iron deficiency. Control group patients had similar characteristics in age, mean dialysis duration but showed adequate response to rHuEPO. DFO was administered to experimental group for 8 weeks along with rHuEPO(the rHuEPO individual mean dosage had been determined by mean dosage of the previous 6 months. Total mean dosage; 123.5 U/Kg/Wk). After 8 weeks of DFO administration, the hemoglobin and rHuEPO dosage levels were checked for 15 consecutive months. It should be noted that the patients determined their own rHuEPO dosage levels according to hemoglobin levels and economic status. In conrol group, rHuEPO was administered by the same method used in experimental group without DFO through the same period. Fifteen months of observation period after DFO trial were divided as Time I(7 months after DFO trial) and Time II(8 months after Time I). The results are as follows: Before DFO trial, mean hemoglobin level of experimental group was 7.8 g/dL, which is similar level(p>0.05) to control group(mean Hb; 8.2 g/dL). But in experimental group, significantly(p<0.05) higher dosages of rHuEPO(mean; 123.5 U/Kg/Wk) than control group (mean; 41.6 U/Kg/Wk) had been used. It means resistancy to rHuEPO of experimental group. But after DFO trial, the hemoglobin levels of the experimental group were increased significantly(p<0.05), and these effect were continued to Time II.(Time I; mean 8.6g/dL, Time II; mean 8.6g/dL) The effects of DFO to hemoglobin were continued for 15 months after DFO trial with similar degree through Time I, Time II. Also, rHuEPO dosages used in the experimental group were decreased to similar levels of the control group after DFO trial and these effect were also continued for 15 months(Time I; mean 48.1 U/Kg/Wk. Time II; mean 51.8 U/Kg/Wk). In the same period, hemoglobin levels and rHuEPO dosages used in the control group were not changed significantly. Notibly, hemoglobin increment and rHuEPO usage decrement in experimental group were showed maxilly in the 1st month after DFO trial. That is, after the use of DFO, erythopoiesis was enhanced with a reduced rHuEPO dosage. So we think rHuEPO reisistancy can be overcome by DFO therapy. In conclusion, the DFO can improve the anemia caused by chronic renal failure at least over 1 year, and hence, can reduce the dosage of rHuEPO for anemia correction. Additional studies in order to determine the mechanism of DFO on erythropoiesis and careful attention to potential side effects of DFO will be needed.

  • PDF